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Preface

There is no such thing as a law of averages. If you are watching a roulette
wheel, and it has just come up red twelve times in a row, the in no way is
black “due” to show. That wheel has no memory; it cannot recall that it
was just red for so long. There are no hidden forces that will nudge it back
to black. Evidence, and logic, tell us that the probability black will be next
is the same no matter how many times we saw red.

Real life events, like a ball landing on a certain color in roulette, will
not always “even out.” Just because it’s possible to win the lottery does not
mean, unfortunately, that if you keep playing you will eventually win. No,
there is no law of averages. But there is such a thing as being too sure of
yourself—as you will be if you try to make decisions under this mythical
law.

You might then be surprised to learn that much of probability and
statistics—as taught in college courses all over the world—are designed
around a law-of-averages-like set of procedures. This means that if you use
those traditional methods, then you will be too sure of your results, just as
when you were too certain that black would show next.

This book is different than others in two major ways. The first is the
focus on what is called objective Bayesian probability. This is a logical, non-
subjective, evidence-driven way to understand probability. Chapter 1 details
the merits of this approach, and the demerits of older ideas.

The second difference is more difficult to explain, and which will become
clearer as you progress. Briefly, to create a probability requires fixing certain
mathematical objects called parameters. Almost every statistical method in
use focuses solely on these parameters. But here’s the thing. These parame-
ters do not exist, they cannot be measured, seen, touched, or tasted. Isn’t is
strange, then, that nearly every statistical method in use is designed to make
statements about parameters. This book will show you how to remove the
influence of parameters and bring the focus back to reality, to real, tangible,
measurable, observables. Things you can touch and see. Doing so will give
us a much clearer—and fairer—picture of what is going on in any problem.
Incidentally, in mathematical circles, this approach goes by the fancy term
predictive inference (e.g. Geisser, 1993; Lee et al., 1996).

Probability, and its stepchild statistics, exist to do one thing: help us to
understand and quantify uncertainty. A lot of uncertainty can be quantified,
and some cannot. We’ll learn how to indentify both situations, to know when
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viii PREFACE

we can use math and computers and when we will be left with nothing but
our intuitions.

For Students
Most books contain pre-packaged datasets for you to analyze. These

have some utility, but my experience is that you spend just as much time
trying to understand the data as you do the methods of analyzing them.
So this book only has one major and two minor datasets, which are used
throughout the text to illustrate concepts.

The real difference is that all of you must collect your own data for a
major project. The data should be in the form that it can be analyzed by
linear or logistic regression. You will understand what these are later, but
for now it is important to know that these are the two types of models
that comprise the bulk of statistics as actually used by civilians. You should
start thinking about what interests you as soon as the class begins, because
collecting data takes time. An extended real-life appendicitis study is given
as an example.

The process of defining an interesting idea, identifying and collecting
data which will describe that idea, and then analyzing that data does a bet-
ter job of teaching the subject than using any canned example can ever do.
I have lead many students through projects and they invariably understand
probability and statistics far better when they get to pick their own data.

Understanding logic and interpreting probability is, or should be, the
largest portion of a statistics course. But usually, a lot of effort must be
expended in mastering the actual mechanics of the methods: how to calculate
a mean and so forth. A great deal of statistics evolved before easy access to
computers became usual. Therefore, many of the methods, and even most or
all that are traditionally taught in introductory courses were designed to be
calculated by hand and by referrals to standardized tables. This often meant
that certain crude assumptions were made which would greatly simplify the
calculations involved. This was certainly a rational thing to do at the time.

Naturally, now that computers have become so cheap that even profes-
sors can afford them, the methods you learn in statistics classes will have
changed to reflect this fact, right?

Uh...no, that’s wrong, actually.
You will still find legions of students churning out sums of squares of X,

sums of squares of Y , total sums of squares, computing means and variances
by plugging in numbers into calculators, and looking up probabilities in
tables with small print in the backs of ridiculously heavy books. I can think
of two reasons for this: (1) All the textbooks are written in this old-fashioned
way, and all the courses are already created around these textbooks. Do
you have any idea how long it takes to develop a new college course? Not
just writing new textbooks, but also creating thousands of new homework
questions and exams, and answers for them, too, and on and on? Just don’t
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even ask. (2) A lot of us professors have progressed a long way toward fogey-
hood, and we feel that, since we had to calculate sums of squares by hand,
then, by golly, our students will too! It builds character.

This book therefore represents a hefty departure from tradition, not just
in its more realistic focus, but away from hand calculation. You will not learn
as many different methods in this book as you would from others, but you’ll
learn the few we have better and more completely. And you won’t make the
same mistakes in understanding that most others students make.

For Teachers
I have used this book succesfully as a one-semester course for groups of

physicians and residents at Methodist, fresh undergraduates (mostly busi-
ness students) at Central Michigan University, and for professional Masters
students at the ILR school of Cornell. These groups share at least one thing
in common: they need to use and understand probability on a daily basis
but they do not know any math beyond multiplication and division.

Because of this, I emphasize understanding above all things, which nec-
essarily means I de-emphasize math and the memorization of formulas. This
strategy is sometimes met with disapproval by those who say “You should
not dumb down a course just so people can pass it”, a sentiment with which
I heartily agree. If anything, though, this book is more difficult than many
other introductory probability and statistics texts because there are no rou-
tines to have by rote. If the student does not assimilate each concept in suc-
cession, then he will have a nearly impossible time completing the course.
That being said, I have rarely lost a student.

The book is designed to be read in order. All Chapters, except perhaps
6 and 15 if there is a lack of time, are meant to be read and gone over in
class. All homework questions in each Chapter should be completed, except
perhaps for those marked “extra.” The class is designed so that all students
complete their own guided, but self-designed, data-analysis (linear or logistic
regression) project. This means that the material in the book is usually
covered in the first 80 to 90% of the time alloted to the course, with that
remaining given to the class projects.

I usually have the students (in small groups if the class is large, or
individually if there are 15 or fewer) present the project to the class in
stages. The first presentation is for the students to describe their projects
and to solicit ideas from the class. The second and third, which may be
combined, are for describing the exploratory analysis and results. If the
class is graduate level, an “abstract” or small paper is required. Satisfactory
completion of the course is a demonstration the students know what they
are doing and saying about their data.
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CHAPTER 1

Logic

1. Certainty & Uncertainty

There are some things we know with certainty. These things are true or
false given some evidence or just because they are obviously true or false.
There are many more things about which we are uncertain. These things
are more or less probable given some evidence. And there are still more
things of which nobody can ever quantify the uncertainty. These things are
nonsensical or paradoxical.

First I want to prove to you there are things that are true, but which
cannot be proved to be true, and which are true based on no evidence.
Suppose some proposition A is true. A might be shorthand for “I am a citizen
of Planet Earth”; writing just ‘A’ is easier than writing the entire statement;
the proposition is everything between the quotation marks. Also suppose
some proposition B is true. B might be “Some people are frightfully boring”.
Then this proposition: “A and B”—meaning “I am a citizen of Planet Earth
and some people are frightfully boring”—is true, right? But also true is the
proposition “B and A”. We were allowed to reverse the letters A and B
and the joint proposition stayed true. Why? Why doesn’t switching make
the new proposition false? Nobody knows. It is just assumed that switching
the letters is valid and does not change the truth of the proposition. The
operation of switching does not change the truth of statements like this, but
nobody will ever be able to prove or explain why switching has this property.
If you like, you can say we take switching’s truth-preserving quality on faith.

That there are certain propositions which are assumed true based on no
evidence will not be surprising to you if you have ever studied mathematics.
The basis of all mathematics rests on beliefs which are assumed to be true
but cannot be proved to be true. These beliefs are called axioms. Axioms
are the foundation: theorems, lemmas, and proofs are the bricks which build
upon the base using rules (like the switching propositions rule) that are
also assumed valid. The axioms and basic rules cannot, and can never, be
proved to be true. Another way to say this is, “We hold these truths to
be self-evident.” I say it this way to hint that there are non-mathematical
truths that cannot be proved but are held to be true, too. It is important
to understand that some truths cannot be proved true—but this also means

1



2 1. LOGIC

that they some propositions are false but cannot be proved false.1 Thus,
there are some, even many, propositions that we have to accept based on no
evidence except our intuition.

Here, for example, is one of them; an axiom of arithmetic. For all nat-
ural numbers2 x and y, if x = y, then y = x. Obviously true, right? It is
just like our switching statements rule above, except applied to numbers
and not propositions. There is no way to prove this axiom is valid. You
have to take it on faith. But from this axiom and a couple of others, all
of mathematics arises. There are other axioms3—two, actually—that define
probability. Here, due to Cox (1961), is one of those axioms: The probability
of a statement on given evidence determines the probability of its contra-
dictory on the same evidence. I’ll explain these terms as we go, but this
essentially means that the probability that something is false is one minus
the probability it is true.

It is the job of logic, probability, and statistics to quantify the amount
of certainty any given proposition has. An example of a proposition which
might interest us: “This new drug improves memory in Alzheimer patients
by at least ten percent.” How probable is it that that proposition is true
given some specific evidence, perhaps in the form of a clinical trial? An-
other proposition: “This stock will increase in price by at least two dollars
within the next thirty days.” Another: “Marketing campaign B will result
in more sales than campaign A over the next month.” In order to specify
how probable these statements are, we need evidence, some of which comes
in the form of data. Manipulating data to provide coherent evidence is why
we need statistics.

Manipulating data, while extremely important, is in some sense only
mechanical. We must always keep in mind that our goal is to make sense of
the world and to quantify the uncertainty we have in given problems. So we
will hold off on playing with data for several chapters until we understand
exactly what probability really means.

2. Logic

We start with simple logic. Here is a classical logical argument, slightly
reworked:

1For example, take any proposition that is known to be true based on no evidence,
call it T, and then the proposition “T is false” is false but cannot be proved to be so based
on any evidence.

2Natural numbers are 1, 2, 3, . . . .
3See Halpern (1999a,b) for criticisms of the original Cox axioms and Dupre and Tipler

(2007) and references therein for a defense.



2. LOGIC 3

All statistics books are boring.

Breaking the Law of Averages is a statistics book.

Therefore, Breaking the Law of Averages is boring.

The structure of this argument can be broken down as follows. The
two propositions above the horizontal line are called premises; they are our
evidence for the proposition below the line, which is the conclusion. We can
use the words “premises” and “evidence” interchangeably. We want to know
the probability that the conclusion is true given these two premises. Given
the evidence listed, it is 1 (probability is a number between, and including,
0 and 1). The conclusion is true given these premises. Another way to say
this is the conclusion is entailed by the premises (or evidence)4. It is crucial
to understand that the conclusion might not be true given different premises
(see the homework).

Thus, you are no doubt tempted to say that the probability of the con-
clusion is not 1, that is, that the conclusion is not certain, because, you say to
yourself, statistics books like this are nothing if not fun. But that would be
missing the point. You are not free to add to the evidence (premises) given.
You must assess the probability of the conclusion given only the evidence
provided.

This method of writing arguments is important because it lays bare the
exact evidence we will use to assess the conclusion. It also shows you that
there are things we can know to be true given certain evidence but that
might not be true given different evidence. Another way to say this, which
is commonly used in statistics, is that the conclusion is true conditional on
given evidence.

Here is another argument, courtesy (in form, at least) of David Hume
(2003):

All the reality TV shows I have observed before have
been ridiculous.

This is a (new) reality show before me.

Therefore, this reality show will be ridiculous.

The conclusion here does not follow from the premises; that is, the con-
clusion is not certainly true, nor is it certainly false (its probability is not 1
nor 0). You may be surprised to learn this, but the universe is not set up to
guarantee that all reality TV shows will be ridiculous. It may be that, for

4Yet another way to say this is that the argument is valid
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whatever unknown reason, that this new show will not be ridiculous. The
conclusion, then, is contingent on certain facts (about network executives,
uncontrollable weeping of contestants, viewers’ habits, etc.), and any con-
clusion that is contingent (on certain conditions about the universe holding)
is never certainly true nor certainly false.5. So what is the probability that
the conclusion is true? Pretty high, but not 1 and not 0. We don’t need to,
and there is nothing in the universe that guarantees that we can, put an
exact number of this probability. It is fine to leave it vague! We can say,
“Given this evidence, it is pretty likely that this show will be ridiculous.” In
fact, many arguments in life do not require numerical probability values be
assigned to their conclusions (see Keynes (2004); Franklin (2001b)).

Another argument:

I will roll a die, which has six sides, only one of which
will show.

Just 1 side of the six is labeled “6.”.

Therefore, the side that shows will be a “6.”

The conclusion here is also not certain, as will be plainly obvious to any
of us. The conclusion is contingent (not certainly true or false) given just
the evidence in the two premises. Here we can assign an exact number to
the probability that the conclusion is true: it is is 1 in 6, or about 0.17. You
knew this before reading this book, but you might not have seen it written
out like this before. That we can assign probabilities this way is one of the
principles of logical probability.

Here is a very difficult argument to understand, but it is important, so
we will take our time with it:

T

M

T is any tautology, which is a proposition that is necessarily true, or
always true no matter what: an example of a tautology is T = “Either
Joe is a pain in the ass, or he is not.” The proposition (all the stuff inside
the quotation marks) T is always true, is it not? Another tautology, T =
“Tomorrow it will rain or it will not.” In this book, whenever we see “T”
is means a true statement; thus the probability of T being true is always 1.
A shorthand way to say this is the probability of T is 1 (we can leave out
the “being true”). There are other true statements that are not necessarily
true. One appeared in the argument before this, “Just 1 side of the six is

5This fact comes to us from Aristotle.
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labeled ‘6’” is a true statement just in case there is a die that has one side
with a 6 on it. This statement is an observation, and a true one, but it is
not necessarily true. The die could have no sides with a 6 on it. Later, we
will call observation propositions like this data.

M is some proposition—it could be anything—which I’ll leave undefined
for a moment to make a point. It should be obvious that if we know nothing
about M, we cannot state any probability about it because there is no direct
evidence about M in T. So if you let T be, for example, the tautology about
Joe, and I did not tell you anything about M, then the probability of M
being true is undefined. Thus, it is possible that some propositions have no
probability (of being true) at all. M is empty in this sense. But let M be
any proposition you want (make one up in your head right now) and ask
“What is the probability M is true?” It has no probability! You can never
ask the (unconditional) probability of any M. You can only ask what is the
probability of M given some evidence.

Let’s change our tautology to T = “M is true or false,” which is another
way of saying, T = “M will happen or it won’t.” These tautologies have
buried within them implicit information6 about M, which is that M can
happen or not. So it must be physically possible for M to be true. If I add
evidence that M is physically possible, but not certain, then we are saying
some positive thing about M, it is information about M that is useful. We
are no longer in complete ignorance about M. With this new information
about M (implicit) in the premises, we can then state a probability of M
being true. However, the evidence is pretty weak: saying something might
be true doesn’t say much. So the best we can do is to say the probability of
M is greater than 0 but less than 1.

This is the same as saying M is contingent. Given only that we know a
proposition is contingent the best we can do is to say that the probability
the proposition is true is greater than 0 but less than 1. Pause here, because
this is a great truth. It is a reminder that all contingent statements, which
we do not know the truth or falsity of, have a probability between 0 and
1. As long as the premises we have do not entail or negate M, then we will
never know whether M is true or false; the best we can ever do is to say M
is more or less probable (Briggs, 2007).

Much later we will meet arguments that look like this (though, sadly,
they will rarely be written this way):

6Tautologies can easily contain implicit information because of the flexibility and
nuances of human language. For example, T = “Either utopians are deluded or they are
not.” Or we can show that the simple T1 = “Poor people have less money” is equivalent
to the ridiculous, but common, T2 = “Rising heating costs hit poor hardest.” Thus, we
generally should ignore this kind of headline because it is always true no matter what.
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I have collected a bunch of data, which I will call x
and y and about which I know certain things.

I want to describe my uncertainty in future values
of x and y using probability models Mx and My.

Future f(x) > f(y)

It will be our job to quantify the uncertainty of the statement f(x) > f(y),
which is just some mathematical proposition about future data; for example,
“there will be more xs than ys” (f() is any function of the data of interest
to us; and if you don’t know what a function is, stick around). Our job as
statisticians is to collect the evidence (the data) and create the models that
make up the two premises of the argument. The job of defining the statement
which is the conclusion (some interesting question about the data) is usually
given to us by the powers that be. We use probability to tie the whole process
together. All statistics problems fit this framework.

3. Theories of probability?

Definition 1. Logical probability: A measure of the logical relation
between a list of premises (or observation statements, or evidence) and some
conclusion (which is a proposition or event).
Keynes (see 2004); Carnap (see 1950); Adams (see 1998); Benenson (see
1984).

This is not the only interpretation of probability.7 There are many more,
but only two of them have large followings stemming from different axioms
(a fact which proves that not all people agree on the truth of all axioms,
which itself should not be surprising to you). The largest (in statistics) is
called frequentism, which was firmly set on its mathematical path by Andrei
Nikolaevich Kolmogorov, but who was preceded by a slew of mathematician-
gamblers like the famous Jakob Bernoulli. The newer and second largest
group follows Bayesianism, named after Thomas Bayes, the man who first
proved a theorem we will meet in Chapter 2. Bayes overlapped Pierre-Simon
marquis de Laplace, who arguably was the better and more original proba-
bilist (de Laplace, 1996); but somehow the name “Laplacianism” was never
proposed. This situation is an instance of statistician Stephen Stigler’s Law
of Eponymy “No scientific discovery is named after its original discoverer.”
Incidentally, the so-called Gaussian, or normal probability distribution which
we shall later meet, was originally discovered by Abraham de Moivre. Go
figure.

7See Plato (1998); Franklin (2001b); Fine (1973) for technical histories and theories
of probability.



4. WHY PROBABILITY ISN’T RELATIVE FREQUENCY 7

The Bayesian camp is divided into two sects, the subjective,8 Bayesian
and the logical or objective Bayesian, which we follow in this book. The
practical differences between the two flavors of Bayesianism are slight, but
the philosophical distinctions are large and have to do with whether prob-
abilities are matters of human belief. Subjectivists believe that events can
be given quantitative probabilities merely by recourse to introspection; ob-
jectivists can show that probabilities are statements of logic. But these are
mere quibbles in some sense, because the math and the methods are mainly
the same for both flavors of Bayesianism, at least in those cases where actual
“hard data” is being analyzed. In Chapter 15 we’ll talk about how reliance
on subjective probability can make you more certain than you should be
when venturing away from data, and below is an argument showing you
why probabilities cannot be subjective.

There is an enormous, yawning philosophical gap between Bayesians and
frequentists. Frequentist theory rose to prominence in the early 20th century
in part because of the (understandable) distaste of its originators with the
non-objective and relativistic nature of early subjective Bayesianism. The
classical theorists who invented frequentism wanted to develop probability
on a solid, objective ground, freed from human opinion, and this is much
to their credit. However, people are starting to realize that this approach
has failed (Howson and Urbach, 1993; Berger and Selke, 1987; Little, 2006;
Hájek, 1997). Frequentists also rejected Bayesianism because they did not
accept arguments like this: All the flames I have seen before have been hot
and this is a flame in front of me; therefore this flame will be hot. This is
an inductive argument, a kind of argument which frightened a great host of
twentieth century philosophers and statisticians because they were thought
to be “groundless.” The history of his odd behavior in philosophy is detailed
in Stove (1982, 1986); Williams (1947) and in statistics in Briggs (2006);
Campbell and Franklin (2004).

4. Why probability isn’t relative frequency

For frequentists, probability is defined to be the frequency with which an
event happens in the limit of “experiments” where that event can happen;
that is, given that you run a number of “experiments” that approach infinity,
then the ratio of those experiments in which the event happens to the total
number of experiments is defined to be the probability that the event will
happen. This obviously cannot tell you what the probability is for your
well-defined, possibly unique, event happening now, but can only give you
probabilities in the limit, after an infinite amount of time has elapsed for all
those experiments to take place. Frequentists obviously never speak about
propositions of unique events, because in that theory there can be no unique

8See Howson and Urbach (1993); Jeffrey (2004); Kyburg and Smokler (1964) for
defenses of subjective probability.
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events. Because of the reliance on limiting sequences, frequentists can never
know, with certainty, the value of any probability.

There is a confusion here that can be readily fixed. Some very simple
math shows that if the probability of A is some number p, and it’s physically
possible to give A many chances to occur, the relative frequency with which
A does occur will approach the number p as the number of chances grows
to infinity. This fact—that the relative frequency sometimes approaches p—
is what lead people to the backward conclusion that probability is relative
frequency.

Logical probabilists say that sometimes we can deduce probability (Franklin,
2001a), and both logical probabilists and frequentists agree that we can use
the relative frequency (of data) to help guess something about that proba-
bility if it cannot be deduced9. We have already seen that in some problems
we can deduce what the probability is (the dice throwing argument above
is a good example). In cases like this, we do not need to use any data, so
to speak, to help us learn what the probability is. Other times, of course,
we cannot deduce the probability and so use data (and other evidence) to
help us. But this does not make the (limiting sequence of that) data the
probability.

To say that probability is relative frequency means something like this.
We have, say, observed some number of die rolls which we will use to inform
us about the probability of future rolls. According to the relative frequency
philosophy, those die rolls we have seen are embedded in an infinite sequence
of die rolls. Now, we have only seen a finite number of them so far, so
this means that most of the rolls are set to occur in the future. When and
under what conditions will they take place? How will those as-yet-to-happen
rolls influence the actual probability? Remember: these events have not yet
happened, but the totality of them defines the probability. This is a very
odd belief to say the least.

If you still love relative frequency, it’s still worse than it seems, even
for the seemingly simple example of the die toss. What exactly defines the
toss, what explicit reference do we use so that, if we believe in relative
frequency, we can define the limiting sequence?10 Tossing just this die? Any
die? And how shall it be tossed? What will be the temperature, dew point,
wind speed, gravitational field, how much spin, how high, how far, for what
surface hardness, what position of the sun and orientation of the Earth’s
magnetic field, and on and on to an infinite list of exact circumstances, none
of them having any particular claim to being the right reference set over any
other.

You might be getting the idea that every event is unique, not just in
die tossing, but for everything that happens— every physical thing that

9The guess is usually about a parameter and not the probability; we’ll learn more
about this later.

10The book by Cook (2002) examines this particular problem in detail.



4. WHY PROBABILITY ISN’T RELATIVE FREQUENCY 9

happens does so under very specific, unique circumstances. Thus, nothing
can have a limiting relative frequency; there are no reference classes. Logical
probability, on the other hand, is not a matter of physics but of information.
We can make logical probability statements because we supply the exact
conditioning evidence (the premises); once those are in place, the probability
follows. We do not have to include every possible condition (though we can,
of course, be as explicit as we wish). The goal of logical probability is to
provide conditional information.

In his A Philosophical Essay on Probabilities Laplace (1996), also quoted
in (Tipler, 2008), opened his remarks with:

All events, even those which on account of their insignifi-
cance do not seem to follow the great laws of nature, are
a result of it just as necessarily as the revolutions of the
sun. In ignorance of the ties which unite such events to
the entire system of the universe, they have been made
to depend upon final causes or upon [chance]11, according
as they occur and are repeated with regularity, or appear
without regard to order; but these imaginary causes have
gradually receded with the widening bounds of knowledge
and disappear entirely before sound philosophy, which see
in the only the expression of our ignorance of the true
causes.

That is, probability is a measure of ignorance, or information, and is not a
physical entity.

The confusion between probability and relative frequency was helped
because people first got interested in frequentist probability by asking ques-
tions about gambling and biology. The man who initiated much of modern
statistics, Ronald Aylmer Fisher Fisher (1970, 1973),12 was also a biologist
who asked questions like “Which breed of peas produces larger crops?” Both
gambling and biological trials are situations where the relative frequencies of
the events, like dice rolls or ratios of crop yields, can very quickly approach
the actual probabilities. For example, drawing a heart out of a standard
poker deck has logical probability 1 in 4, and simple experiments show that
the relative frequency of experiments quickly approaches this. Try it at home
and see.

Since people were focused on gambling and biology, they did not realize
that some arguments that have a logical probability do not equal their rel-
ative frequency (of being true). To see this, let’s examine one argument in

11Laplace actually used the word hazard.
12While an incredibly bright man, Fisher showed that all of us are imperfect when he

repeatedly touted a ridiculously dull idea. Eugenics. He figured that you could breed the
idiocy out of people by selectively culling the less desirable. Since Fisher also has strong
claim on the title Father of Modern Genetics, many other intellectuals—all with advanced
degrees and high education—at the time agreed with him about eugenics.
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closer detail. This one is from Stove (1986, 1973) (we’ll explore this argument
again in Chapter 15):

Bob is a winged horse

Bob is a horse

The conclusion given the premise has logical probability 1, but has no
relative frequency because there are no experiments in which we can collect
winged horses named Bob (and then count how many are named Bob). This
example, which might appear contrived, is anything but. There are many,
many other arguments like this; they are called counterfactual arguments,
meaning they start with a premise that we know to be false. Counterfactual
arguments are everywhere. At the time I am writing, a current political
example is “If Barack Obama did not get the Democrat nomination for
president, then Hillary Clinton would have.” A sad one, “If the Detroit
Lions would have made the playoffs last year, then they would have lost
their first playoff game.” Many others start with “If only I had...” We often
make decisions based on these arguments, and so we often have need of
probability for them. This topic is discussed in more detail in Chapter 15.

There are also many arguments in which the premise is not false and
there does or can not exist any relative frequency of its conclusion being
true; however, a discussion of these brings us further than we want to go in
this book.13

Hájek (1997) collects many other examples why frequentism fails, most
of which are more technical than what we can look at in this book. As he
says in that paper, “To philosophers or philosophically inclined scientists,
the demise of frequentism is familiar”. But word of its demise has not yet
spread to the statistical community, which tenaciously holds on to the old
beliefs. Even statisticians who follow the modern way carry around frequen-
tist baggage, simply because, to become a statistician you are required to
first learn the relative frequency way before you can move on.

These detailed explanations of frequentist peculiarities are to prepare
you for some of the odd methods and the even odder interpretations of these
methods that have arisen out of frequentist probability theory over the past
∼ 100 years. We will meet these methods later in this book, and you will
certainly meet them when reading results produced by other people. You will
be well equipped, once you finish reading this book, to understand common
claims made with classical statistics, and you will be able to understand its
limitations.

13For more information see Chapter 10 of Stove (1986).



5. WHY PROBABILITY ISN’T SUBJECTIVE 11

5. Why probability isn’t subjective

If 3 out of 4 dentists agree that using Dr Johnston’s Whitening Powder
makes for shiny teeth, what is the probability that your dentist thinks so?
(You are asking this question before you learn what your doctor prefers.)
Given only the evidence that 3 out of 4 etc., then we know the probability
is 0.75 that your dentist likes Dr Johnston’s Whitening Powder.

But what if you learned your dentist had just attended an “informa-
tional seminar” (with free lunch) sponsored by Galaxy Pharmaceuticals,
the manufacturer of Dr Johnston’s Whitening Powder? This introduces new
evidence, and will therefore modify the probability that your doctor would
recommend Dr Johnston’s.

It may suddenly seem that probability is a matter of belief, of subjective
feeling, because different people will have different opinions on how the free
lunch will effect the doctor’s endorsement. Probability cannot be a matter of
free choice, however. For example, knowing only that a die has 6 sides, and
knowing nothing else except that the outcome of the die toss is contingent,
then the probability of seeing a 6 is 1 in 6, or about 0.17, regardless of what
you or I or anybody thinks. You are not free to choose another probability
when the evidence and the conclusion are specific like this.

After you learn of your doc’s cozying up to the pharmaceutical repre-
sentative, you would be inclined to increase your probability that he would
tout Dr Johnston’s to, say, the extent of 0.95. I may come to a different
conclusion, say, 0.76 (just slightly higher). Why? Because we are now using
different sets or collections of information, different evidence or premises,
which naturally change our probability assessments. You might know more
about pharmaceutical companies than I do, for example, and this causes you
to be more cynical, whereas I know more about the purity and selflessness
of doctors, and this causes me to be trusting.

But, if I agreed with you exactly about the new evidence, and I felt it
was as relevant as you did, then we must share the same probability that
the conclusion was true. This, of course, is very unlikely to happen (see
the homework). Rarely will two people agree on a list of premises when the
argument involves human affairs, and so it is natural that for most complex
things, people will come to different probabilities that the conclusions are
true. Does this remind you of politics?

Because people never agree on the set of premises—and they cannot
loosely agree on them, they have to agree on them exactly—probabilities
will differ. In this sense, probabilities are subjective—rather, it is the choice
of premises that is subjective, probability itself is not. The probabilities
assigned to a conclusion given a set of premises is not. The probability of a
conclusion always follows logically from the given premises.

Let’s further highlight this with another example: E1 = “An item which
will be tossed once has n sides and just one side is labeled S.” The propo-
sition of interest is A = “We see an S.” We already know that, via logical
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probability, Pr(A|Evidence) = 1/n. A subjectivist might agree with this but
has some problems: justifying why he does so, why anybody should agree
with him, and explaining why he does not pick another number. The logical
probabilistic must choose 1/n, regardless of what he wants the number to
be. I invite anybody who is a subjectivist to argue either for 1/n or against
it.

Even more illuminating is this classic: E2 = “All men are mortal and
Socrates is a man.” The proposition of interest is B = “Socrates is mortal”
and Pr(B|E2) = 1.

A subjectivist is allowed to argue that the probability was some other
number than 1, an impossibility in logic(al probability). To prove what I
just said is false requires you to show how it is impossible for a subjectivist
to supply a different answer. Note that just saying “It’s a valid argument”
doesn’t work, because then you have to answer say why valid arguments do
not fall under subjective probability rules.

I was once a referee on a paper (for Weather and Forecasting) where the
author was trying to introduce the use of Bayesian subjective probability
in a problem with a beta prior. All you have to know here is that the beta
is a probability used in certain kinds of arguments and that it has two
parameters which must be specified: different choices will lead to different
answers. The usual values for the parameters are 1 and 1 (or 1/2 and 1/2)
chosen by (semi) logical arguments, but the author, on a whim, chose 10
and 3. I tried to argue with him and the editor that this was silly, but the
author countered that since Bayes was subjective, he was free to choose
whatever prior he wanted. There’s no defeating that argument, not ever,
given the premise that probabilities are subjective. (The paper, incidentally,
was published with the author’s odd values.)

The choice of probability models for observables and the probability
models for the parameters of the those models make a huge difference in
the final answer, which no one disputes. Old-school frequentists rightly fear
that people, arguing subjectivity allows them anything, could select priors
so as to produce desired or pre-determined results. This can happen, so the
fears of the old guard are real (though perhaps exaggerated). Anyway, in
this book, we use logical probability all the way.

6. Randomness

There is a great deal of nonsense written and said about randomness.
Although it’s never stated directly, there is a certain mysticism about ran-
domness which is supposed to “bless” statistical results. Samples must be
“random” to be statistically valid, it is often said. This view is false—we
will take care of these beliefs when we meet them.

When we say some outcome (proposition) is random, all we are saying
is that we don’t know what that outcome will be certainly. If that outcome
is, for example, the result of a dice roll, then we are saying that we do not
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know in advance what face will show. That is, the outcome is “random.” Not
knowing what something is, is saying that the truth of that thing is unknown,
or “random.” Technically, then, randomness means ignorance. Only this, and
nothing more.

Classical statistics talks a great deal about “random variables.” We’ll
meet these creatures later, but for now, we can remember that every time
we see that term, it only means “unknown value.” Likewise, a favorite term
is randomized trial, which are the only kind of experiment accepted in some
quarters, all other forms of trial deemed untermenchen (tell this to physicists
and chemists etc. who regularly run unrandomized trials, yet have managed
to learn a great deal about the world). “Randomized trials” only means a
trial where some of the outcomes will be unknown, and others will be known
or controlled. Chapter 14 will talk more about this.

There is no inherent physical quantity that is randomness that we can
suck out of the dice, for example, or out of any other thing. So randomness
isn’t needed to assign logical probabilities to physical events (Briggs, 2006,
2007). Barring quantum mechanics,14 about which Richard Feynman said
fairly that nobody understands, there is nothing spooky or mysterious be-
hind events that are random. Certainly there is no agreement yet even about
what quantum mechanical measurements are; for example, Tipler (2008) and
other authors claim, in the Many Worlds quantum interpretation, that the
physical world is fully deterministic (see also Cook, 2002).

Nevertheless, some pine for physical randomness, if only to bulk up their
faith in frequentism. For example, Jaynes (2003) claims that the originators
of frequentism wanted there to be a inherently non-deterministic basis to
the universe because of the mutation theory of natural selection. Mutations
were said to be “random.” But something caused the mutations, and just
we do not know the causes does not mean that they do not exist nor that
they are due to some ethereal property of randomness.

7. A taste of Boolean algebra

George Boole, in his 1854 book An Investigation of the Laws of Thought,
on which are Founded the Mathematical Theories of Logic and Probabili-
ties, introduced a calculus for working with statements which is now called
Boolean Algebra, (Brown, 2003). We have been using this calculus so far,
although you didn’t know it because the manipulations have been mostly
intuitive. But there are some formal rules that we’ll need before we get much
further. Our only real problem will be notation. You can look in a dozen
books and see thirteen different notations, all of which mean the same thing,
but which you must assimilate anew each time before you can understand
what the authors are saying. There are some consistencies, but very few. I

14How I regret the term quantum. If the physics describing movement of small objects
were instead called discrete mechanics, we’d have far less silliness in the world.
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try to stick with the most-used symbols, but be warned: if you read another
book, you will likely see a different notation.

We use capital Latin letters to stand for propositions, which may be
true or false. So A = “Real estate agents never lie” is a statement which
is either true or false, but we might not know whether it is true or false.
If we have another proposition, B, and we write AB, this means the joint
proposition “A and B”. So if B = “The New York Times always reports
stories in an absolutely unbiased manner”, then AB means “Agents never
lie and the Times is always unbiased.” Both parts of the proposition must
be true for AB to be (jointly) true.

When we write A ∪ B, it means “A or B.” If either A or B is true, or
both are true, then the proposition “A ∪ B” is true.

There are, unfortunately, many ways to write that a proposition is false.
None of them is especially beautiful. One way, the one we’ll use here, is AF .
Thus, if A = “Real estate agents never lie”, then AF = “Real estate agents
sometimes lie.” If A = “A Head will show when I flip this coin”, then AF

= “A Head will not show when I flip this coin”, which is a fancy way of
saying we’ll see a tail. Other ways of writing A is false that you’ll see in
other books: Ac (the c means complement, or opposite), ¬A, ∼A, and notA.

Sometimes we need a truth, a proposition which is always true. We’ll
label these statements T. There are propositions that are true just because
the universe was in a certain position, meaning we observed the proposition
to be true. Like above, it might be true that T = “you saw a dog on your
lawn last week” just in case you actually did see a dog on your lawn last
week. All observed data statements are truths in this sense. For example,
T = “In patient 37, I measured a systolic blood pressure of 182 mmHg”
just in case I actually did measure 182 mmHg on patient 37. There are
other propositions which are necessarily true, which are true regardless of
anything. Tautologies, which we met earlier, are the most common examples
of these truths.

8. Homework

(1) Rewrite the first logical argument (with the conclusion “Breaking the Law
of Averages is boring”) using one or more different premises such that the
conclusion has probability 0. Rewrite it again so that it has a probability
between 0 and 1.

(2) Rewrite the second argument (with the conclusion “This reality show
will be ridiculous”) using one or more different premises such that the
conclusion has probability 1.

(3) What is the probability of drawing the Jack of Hearts from a standard
deck of playing cards? Write your argument in the same form as the dice
example.

(4) In the dice argument, the only evidence was “I will roll a die, which has
six sides, only one of which will show” and “Just 1 side of the six is
labeled ‘6.’” The conclusion, “We see a ‘6’” had logical probability 1/6.
Why don’t we need the premise “The die is fair”? Similarly, think of a
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coin flip, which has similar premises: “Flip a coin and only one side has
an H” to the conclusion “See an H”, which has logical probability 1/2.
Why is it not necessary to add the premise “This is a fair coin”?

(5) Alice hands you a deck of playing cards which she says are well shuffled.
Bob hands you another deck and says nothing. What is the probability of
drawing the Jack of Hearts from Alice’s deck and what is it from Bob’s
deck? Explain your answer.

(6) Charlie hands you a third deck, but as he does so, he gives you a wink.
What is the probability of drawing the Jack of Hearts from Charlie’s deck?
Write your answer in the form of a logical argument. Be clear about your
premises.

(7) The logic of advertisements: (a) An ad states that you can “Save up
to 50%!”. Logically, what is the (entire) range of savings?; (b) Stanford
Financial took out a full page ad in the Wall Street Journal with a picture
of golfer Vijay Singh listing his enormous number of tournament wins
with the words “Vijay Means Victory.” Given this evidence, what is the
probability Stanford Financial won’t lose money on your investment?

(8) New York City “Health Czar” Thomas Frieden (D), who successfully
banned smoking and trans fat in restaurants and who now wants to add
salt to the list, said in an issue of Circulation: Cardiovascular Quality and
Outcomes,15 that “cardiovascular disease is the leading cause of death in
the United States.” Describe why no government or no person, no matter
the purity of their hearts, can ever eliminate the leading cause of death.

(9) My insurance company recently disputed a claim I had made. In order
for them to pay, they said that I had to provide proof that I did not
have other health insurance. What is the probability I could provide such
proof?

(10) There is a famous, if not tedious, statement that goes L = “This statement
is false.” What is the probability that L is true? Explain how you arrived
at your answer.

(11) Right before I come to class, I put either a quarter or a dime in my pocket.
Once I get there, I pull out the coin and conceal it from your view. What
is the probability that I reveal the quarter? Write your answer in the form
of a logical argument. Be clear about your premises.

(12) Bounding probabilities. Is it possible to translate the statement “Given
evidence E (about the past performance, knowledge of the starting lineup,
etc.), I conclude the Detroit Tigers will most likely win tomorrow’s game”
into a numerical value? Explain how you arrived at your answer.

(13) Wiley, a prominent textbook publisher, is keen that their books contain
no bias. In their author guidelines, they give this example of how to avoid
bias. “Biased: Almost everyone likes his bacon crisp. Unbiased: Most
people like their bacon crisp.” Let both of these serve as premises in two
different arguments. What can you say about the probability of A = “Joe
likes his bacon crisp” given either of these two premises?

(14) Create your own tautology T (different from those in the text).
(15) B = “The sun rises in the west.” What it the probability of BT and B∪T,

where T is the tautology from the previous problem.

15DOI: 10.1161/CIRCOUTCOMES.108.791954
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(16) What is the probability that A = “Wearing white shoes after Labor Day
is wrong”? Explain.

(17) Write out a list of premises (be explicit) for the Dr Johnston’s Whitening
Powder example supposing you learned your doctor did have that free
lunch, then give a guess for the probability of the conclusion. Compare
your list with other people in the class. Do any two lists exactly match?

(18) A statement of moral relativism, often called upon in Postmodern philos-
ophy and by highly-educated people, is C = “There is no truth.” What is
the probability C is true? This reminds me of an appearance of Leonard
Nimoy on The Simpsons where he said, “The following tale of alien en-
counters is true. And by true, I mean false. It’s all lies. But they are
entertaining lies. And in the end, isn’t that the real truth? The answer:
No.”

(19) If A = “Real estate agents never lie”, then AF = “Real estate agents
sometimes lie.” Why isn’t AF = “Real estate agents always lie”?

(20) Why is the probability that D is true given the evidence you listed not
evidence that probability is subjective?

(21) extra In the argument T, therefore M, where T is the tautology “M will
happen or it won’t”, why isn’t the probability of M 1/2?

(22) extra A current theme in statistics is that we should design our proce-
dures in the modern way but such that they have good relative frequency
properties. That is, we should pick a procedure for the problem in front
of us that is not necessarily optimal for that problem, but that when this
procedure is applied to similar problems the relative frequency of solu-
tions across the problems will be optimal (see Little, 2006). Show why
this argument is wrong.



CHAPTER 2

Probability

1. Probability rule number 1

We always write propositions, which are observable or definable events,
with Latin letters. For example, let E = “3 out of 4 dentists recommend
Dr Johnston’s” and A = “My dentist will recommend Dr Johnston’s.” The
notation we use to write probability is

(1) Pr(A|E) =
3

4
.

The shorthand in equation (1) means, in English, “The probability that A
is true given the evidence E (is true), is 0.75.” Don’t let the “E” or “A”
confuse you: these are just place holders so we can avoid typing all that
stuff about the dentist each time; we could have used any other letters, and
equation (1) would be just the same. This is just like the arguments that
we wrote in a long-hand fashion before; here, it is written briefly, the line
separating the premises went from horizontal to vertical, but nothing really
changed except that it is compact and easier to work with.

Try this one: a die has 6 sides and we want to know the chance that we
see a 6 on the next throw. Our evidence E = “This die has 6 sides, and we
can see only side at a time”. We want to know B = “See a 6”. This is

Pr(B|E) =
1

6
.

Note that I re-used the letter E for the new evidence; the specific letter
just does not matter. OK. Given the evidence E, what is the probability we
C=“see a 5 or 6”? Given our experience with dice, we know that we can only
see one side at a time on any throw (which is evidence that is implicitly part
of E), that we’ll see one of {1, 2, 3, 4, 5, 6}, and that the evidence between
seeing sides 5 or 6 is irrelevant, we can form this rule:

Pr(C|E) = Pr(5 or 6|E) = Pr(5|E) + Pr(6|E) =
2

6
.

This is the rule: In propositions like C with evidence E, the “or”s in English
turn into the “+”s in the math.

In general, given an event, like a dice throw, that can be broken down
into discrete sub-events, and there is evidence that these discrete sub-events
can only happen one at a time, the probabilities of the individual sub-events
sum together. For example, if the proposition or event A can be broken down

17
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into discrete propositions or events A = {A1,A2, . . . ,An}, then

(2) 1 = Pr(A|E) = Pr(A1|E) + · · ·+ Pr(An|E),

Here, A means “The number 1 or 2 or 3 or 4 or 5 or 6 will show”. Notice
that the sum of all sub-events always equals 1, for something must happen:
this is because the equation means “A1 or A2 or ... An will happen.” For
the die, A = “a die is rolled” and A1 =“a 1 shows”, A2 =“a 2 shows” etc.
Incidentally, it is not always the case that each Pr(Ai|E) = 1/n for every A
we can think of. That is, not all events will break apart into equally likely
pieces.

Another way to view the problem is to think about the probability of not
seeing a 5 or 6. The probability of seeing one of {1, 2, 3, 4, 5, 6} is, of course,
1. So the probability of seeing a 5 or 6 must be 1 minus the probability of
not seeing 5 or 6. This sort of “negative” thinking can come in very useful
in solving problems.

How about the probability of seeing a number greater than 3? Well,
what are the possibilities? Namely, 4, or 5, or 6. Turn the “or”s to “+”s.
How about greater than or less than 3? The possibilities are 4, 5, or 6 as
before, and then 1 or 2. Another way to express this is the probability of
not seeing a 3.

The trick for these sorts of problems comes in turning the English into
math. Never try to jump to the answer. You cannot go wrong by just writing
out everything that can happen explicitly. The answer will then become
obvious. Use this technique all throughout the book.

2. Probability rule number 2

What is the probability, in the throw of two dice (one after the other, or
two together), of seeing a pair of 6s? We can guess that any given throw does
not influence the results from any other throw; or, at least, that knowledge
of the results of any given throw are irrelevant to knowledge of other throws.
A classical way to say this is that the throws are independent.

In general, if B1,B2, . . . ,Bn are separate propositions or events, and the
knowledge (or evidence) E of what happens on any Bi is irrelevant to what
happens on any other Bj (for j 6= i; what happens what j = i?), then the
probability that B1 and B2 and etc. Bn is true is

(3) Pr(B1B2 . . .Bn|E) = Pr(B1|E) Pr(B2|E) . . .Pr(Bn|E).

In English, getting two 6s means getting a 6 on one and a 6 on the other.
The rule is: the “and”s of English turn to the “×”s of math. Thus, 1

6 ×
1
6 .

Getting three 6s in a row is Pr(6|E)3 = 1/63 ≈ 0.005, and so on.
How about if you were watching the roulette wheel and saw that red

hit 20 times in a row? What is the probability of that happening, you ask
yourself. Well, the probability of red on any one spin is about 1/2, or close
enough to 1/2 to do a rough calculation (this is our evidence). The proba-
bility of seeing red twice in a row must be, by our rule, “red on the first and
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red on the second”, or about (1/2)2 = 1/4. Thus, twenty times in a row is
(1/2)20, which is about 1 in a million. That is so small a probability that it
almost can’t happen, so you decide to bet on black for the next spin, since
you reason that black is certainly due. And that’s just what the casino is
hoping you’ll do.

Again, the real difficulty in these problems—in all problems—is translat-
ing the English back into the mathematical rules you know. It is a non-trivial
skill and takes lots and lots of practice, so do not be dismayed if you have a
trying time at first.

3. Probability rule number 3

What is the probability that A= “somebody is older than 42”? What
evidence (E) is given here? Well, none is explicitly stated, but there is some
implicit evidence. We know at least the fact that we are asking about a
human. North American human? We don’t know, so we can assume E=“all
humans.” That’s fine, that is enough information to make a guess. Now here
is a different question: what is the probability that somebody is A=“older
than 42” given that they B =“are older than 40” and that they are E (we
always need some evidence to make a probability statement)? Well, someone
can be 43 or older, so that it is possible that A and B can both be true; or
someone can be 39 or younger, so that it is possible that A and B can both
be false. But somebody can be 41, which means that A can be false and B
true. Thus, it is never the case that B can be false and A true.

It is not always true that probability rule 2 holds, that is, the formula
Pr(AB|E) = Pr(A|E) Pr(B|E) does not always work. That formula only
works when what we know about B is irrelevant to what we know about A,
and of A about B. If knowledge of B is relevant to our knowledge of A, and
vice versa, then

Pr(AB|E) = Pr(A|BE) Pr(B|E)

= Pr(B|AE) Pr(A|E),(4)

because logically, AB = BA. In words, the probability that A and B is true is
the probability that A is true first given that B is true, times the probability
that B is true—everything is conditional on some evidence E, of course. We
first think about how true A is if B were true, then we ask how true is B
(given E). As noted, the relationship is symmetric: we can first take the
probability that B is true given A.

This rule lets us make a guess about the age problem, conditional on E,
which means we’re considering all humanity. The probability that somebody
is older than 42 given they are older than 40 is pretty high, maybe 0.8 as a
guess. The probability that somebody is older than 40 is maybe 0.4. So the
probability of AB is roughly 0.8 × 0.4 ≈ 0.3. There is no need to be more
precise than one digit for our answer, we are just guessing anyway. Do not
fall into the common trap of writing more digits to give the appearance of
precision where it does not exist. I’ll harp on this point later.
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Table 1. Table of ASVAB scores for a room full of 155 recruits.

Score < 38 Score ≥ 38
Air Force 10 25
Army 25 5
Marines 40 0
Navy 25 25

Meanwhile, let’s demonstrate the rule. Pretend that you are a military
recruiter and you have been ordered to find an electronics weapon technician
for training. As always, you are in a terrible hurry. The person you select
can be from any branch of the service, and, luckily, there is a room full of
recruits next door. The job requires an intelligent person, and the military
measures smartness with a test called the Armed Services Vocational Apti-
tude Battery, or ASVAB. Higher scores are better. The room contains the
following men (which is our evidence E):

What is the probability that a recruit in the room B = “Scores over
38” and A = “Is a marine”? That is, what is the probability of BA? Try
using Pr(B|AE) Pr(A|E) first. What is Pr(A|E)? There are 155 recruits in
the room, and 40 are marines, so this must be 40/155 ≈ 0.26. How about
Pr(B|AE)? The A on the right hand side means, of course, that the recruit is
a marine, so all we have to count are marines and nobody else. Again, there
are 40 of them and none scored over 38. So Pr(B|AE) = 0, which means
Pr(BA|E) = 0×0.26 = 0. We could have solved this the opposite way, using
Pr(A|BE) Pr(B|E). What is Pr(B|E)? Well, 55 men scored over 38, so this
is 55/155 ≈ 0.35. And Pr(A|BE)? The conditioning information is B, those
with scores over 38, which are just those 55 men. None of them were A (none
were marines), so Pr(A|BE) = 0, and Pr(BA|E) = 0× 0.35 = 0.

Suppose B can happen in one of n different ways. That is B = B1 or B2 or . . .Bn,
then Pr(B1 or B2 or . . . or Bn|E) =
Pr(B|E) = Pr(B1|E)+Pr(B2|E)+ · · ·+Pr(Bn|E) = 1. In the example above,
B is a military recruit, and, for instance, B3 was a marine; the other Bi are
the other branches. Or think of B as a roll of a die, and the sides are Bi;
one of the sides will come up, so B itself is always true, but only one of the
Bi will be true. Since B is true, it is the case that A=AB, shorthand for
A and B is true whenever A is true, and false whenever A is false. Hold it
right there! Make sure you understand what is happening here, because it
is tricky. Let B be any true statement. Then regardless whether A is true,
the probability that A is true is equal to the probability that AB is true.
This means that Pr(A|E) = Pr(AB|E). Incidentally, if C were also true, then
Pr(A|E) = Pr(ABC|E), too.

We can prove this by recourse to rule number 3. Pr(AB|E) = Pr(A|BE) Pr(B|E) =
Pr(A|BE) = Pr(A|E) because Pr(B|E) = 1 and BE=E (remembering the
Boolean algebra rules).
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We can now use the simple consequence of logic that A=AB to help us
calculate the probability of A using something called total probability:

Pr(A|E) = Pr(AB|E)

= Pr(A(B1 or B2 or . . . or Bn)|E)

= Pr(AB1 or AB2 or . . . or ABn|E)

= Pr(AB1|E) + · · ·+ Pr(ABn|E)

= Pr(A|B1E) Pr(B1|E) + · · ·+ Pr(A|BnE) Pr(Bn|E).(5)

Sometimes we do not directly know Pr(A|E) but we do know each Pr(A|BiE),
and when this is the case, we can use this formula.

Even though we know all the probabilities in the ASVAB example, let’s
see how total probability works with it. What is the probability of B = “The
recruit is an Airman, Soldier, Marine, or Sailor”? It is 1, right? So what is
the probability of A = “The recruit scores less than 38 on the ASVAB?”
We can compute it right from the table: 100 recruits scored less than 38
out 155, so the probability is 100/155. Now use total probability. Pr(A|E) =
Pr(A|B1E) Pr(B1|E)+Pr(A|B2E) Pr(B2|E+Pr(A|B3E) Pr(B3|E+Pr(A|B4E) Pr(B4|E =
(10/35)(35/155) + (25/30)(30/155) + (40/40)(40/155) + (25/50)(50/155) =
100/155 (notice all the cancellations: for example, the 25s go in (10/25) ×
(25/155) leaving 10/155).

4. Probability rule number 4: Bayes’s rule

Since Pr(AB|E) = Pr(A|BE) Pr(B|E) = Pr(B|AE) Pr(A|E), then it is
true that

(6) Pr(B|AE) =
Pr(A|BE) Pr(B|E)

Pr(A|E)

We can go farther, using total probability, since Pr(A|E) = Pr(A|B1E) Pr(B1|E)+
· · ·+ Pr(A|BnE) Pr(Bn|E), then

(7) Pr(B|AE) =
Pr(A|BE) Pr(B|E)

Pr(A|B1E) Pr(B1|E) + · · ·+ Pr(A|BnE) Pr(Bn|E)

which at this point is just some formula, though an important one, called
Bayes’s rule, named for the gentlemen who first wrote it out. We can make
it less abstract by using an example. The example we’ll use is a cliche—it’s
found in nearly every introductory probability book—but for good reason,
because the example will always be relevant, especially when you get older
(and you will, you will).

Suppose that you and a friend dine at Uncle Wong’s Chinese restaurant.
Unbeknownst to your companion, you have read Penn & Teller’s How to Play
With Your Food and have loaded your friend’s fortune cookie with one of
that book’s tear-out predictions1, and which reads That lump is cancer. Your
friend opens this cookie. Now, since most people these days are paranoid

1These are on a sheet in the back of the book.
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about their health, and your friend is certainly most people, he decides to
take seriously the warning of his Chinese-American pastry, and runs to the
doctor to have his lump checked out.

So he does, and has a blood test which looks for the presence of a certain
chemical, which is known to be associated with lump cancer. Then the bad
news comes: the A+ = “test is positive”! The very natural thing your friend
now wants to know is what is the probability that he B+ = “has cancer.”
We write “has cancer” as B+, because it is also possible that your friend
does not have cancer, or B−. The test might also have been negative, which
we write as A−. That is, B = B+ ∪ B−, and A = A+ ∪ A−; remember
“∪” is the mathematical way of writing “or.” This means that Pr(B|E) =
Pr(B+∪B−|E) = Pr(B+|E)+Pr(B−|E) = 1: a fancy way of stating that the
probability of having cancer or not having cancer is 1. B is true for every
single individual on this planet, right? (Don’t read further until you agree
with this.) This means A+ = A+B = A+B+ ∪A+B− because the statement
B is always true.

Equation (7) in this situation becomes—Hold it here for a moment.
It is my experience that students start freaking out just about now. We
used As and Bs etc. so far, but all of a sudden we have strange creatures
like B− and A+. Never forget that these are just symbols, place-holders for
actual statements, and we are free to substitute any symbols we want for
the original ones—so the new equation is (stare at this awhile to make sure
you get it):

(8) Pr(B+|A+E) =
Pr(A+|B+E) Pr(B+|E)

Pr(A+|B+E) Pr(B+|E) + Pr(A+|B−E) Pr(B−|E)

To solve this, you obviously need to know what the numbers on the right-
hand-side are. Since this is such a common situation, all those probabilities
have official names (which are given in the next section). For now, we’ll just
state things in words.

Pr(B+|E) is the probability of having cancer given E. Your friend’s E is
probably something like “All Americans” or maybe “All Americans who are
as old as I am” or whatever. Your E is “The whole thing is a sick, sick (but
increasingly funny) joke.” Let’s say the probability of cancer, given your
friend’s E (but not given any information about the test), of lump cancer is
1 in a 1000.

The other probabilities are key. The first is the probability that some-
body gets a positive test given that they have cancer. You might think this
is 1, or near it. But let me tell you—and I know, I work in a hospital—it
isn’t, and sometimes it’s not even close to 1. These tests are not, are far
from, perfect. Mistakes creep in any old way. A not unusual value is 9 out
of 10, which is high, but is not 10 out of 10.

This leaves the probability of somebody getting a positive test given
that they do not have cancer. More flaws are possible this way, too, and a
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common value is, say, 1 out of 100. We can then calculate

Pr(B+|A+E) =
9
10

1
1000

9
10

1
1000 + 1

100
999
1000

≈ 0.083.

Yes, only an 8% chance of cancer given a positive test and the evidence E.
Is that surprising?

Of course, using your E, the probability that your friend has lump cancer
is near 0, so you should really pick up the check.

5. Extra: More Bayes’s rule and beyond!

The example given in the Section above is used on a daily basis, par-
ticularly in medicine. Here is what the various pieces of that formula are
called:

Pr(B+|E) Base rate, or the probability of having the
disease (B+) in the population specified
by E.

Pr(A+|B+E) Sensitivity, or the probability of having a
positive test (A+) given the patient has
the disease.

Pr(A−|B−E) Specificity, or the probability of having a
negative test (A−) given the patient does
not have the disease.

Pr(B+|A+E) Positive predictive value, or the probabil-
ity of having the disease given a positive
test.

Pr(B−|A−E) Negative predictive value, or the probabil-
ity of not having the disease given a neg-
ative test.

The most touted statistic is sensitivity, although this, as you know
by now, does not answer the question the patient has, which is “What
is the probability that I have the disease?” A test, after all, can be per-
fectly sensitive, i.e. Pr(A+|B+E) = 1, but this does not guarantee that
Pr(B+|A+E) = 1.

Before leaving this Chapter it is important to understand that we have
only listed a paltry few of an ever-growing list of probability tools. These
bare three allow us to solve many common problems, it is true, but they
are not nearly enough to solve even most. Do not fool yourself into being
too confident that the rule you apply to some new situation is just the right
one, or that you have applied it correctly. It is a common mistake. However,
with these three and the next one, we’ll have all we need to understand the
most common problems.

Just as an example of how easy it is to mislead yourself, let A = “It
snows in December in New York City” and B = “Roll and die in December
and see anything but a 1”. Let E be whatever evidence we need to give the
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probabilities of A and B, for example, historical weather reports and our
standard knowledge of dice. Then Pr(A|E) ≈ 0.9 and Pr(B|E) = 5/6 ≈ 0.8.
So what is Pr(A or B|E)? If you naively used Rule 1, then that “or” turns
to pluses and Pr(A or B|E) ≈ 0.9 + 0.8 = 1.7 and we are in trouble. But we
have misapplied Rule 1 because A and B are not part of the same event.

Now, it turns out that it is very easy to to use the rules we already know
and show that

(9) Pr(A or B|E) = Pr(A|E) + Pr(B|E)− Pr(AB|E)

and since Pr(AB|E) = Pr(A|BE) Pr(B|E) then (see the homework)

(10) Pr(A or B|E) = Pr(A|E) + Pr(AF |E) Pr(B|E)

and because of symmetry this is also

(11) Pr(A or B|E) = Pr(B|E) + Pr(BF |E) Pr(A|E).

Isn’t that wild? In words, the chance of “A or B” being true is the chance
of A being true plus the chance of B being true times the chance that A is
false. Or it’s the probability (all given E) that “A is true or A is false and B
is true.” Or, the probability (given E) that “We do not see a 1 when we roll
the die or We do see a 1 and it snows”. I don’t know about you, but I don’t
find this result immediately intuitive, which is why you have to be careful
is assessing probabilities!

An excellent (classical) book to learn more about probability rules is
Ross (1988).

6. Homework

(1) Suppose aliens from the planet Thorsten have just developed a new and
improved probe, which they decide to test on humans. They only want
the best and brightest, and so have chosen to sample humans from an
introductory statistics class. In this class are 12 females and 8 males. On
their first run, the aliens abduct just 1 person. What is the aliens’ E, and
what are the chances the student they snatch is a male?

(2) On their second run, after fixing an unfortunate side effect of the probe
that was discovered after the first abduction went awry, they decide to
get a larger sample, and want to be sure to get both males and females,
but they also don’t want to re-use the guy they took before, for obvious
reasons. They want two females and two males. F1 and F2 (two females
who have numbers for names), are best friends. What are the chances that
they are taken together (from their perspective)? Their brothers, M1 and
M2, are also in the class. What are the chances that they are also taken?
hint: Take a deep breath and relax; you can do this problem. First start
with considering that, out of the females, they abduct F1; then consider,
having got her, the aliens abduct F2, and so on.

(3) A year has passed and the memory blocks the aliens have used to stop the
abductees from blabbing have worked. They will grab one more student
and bring this student back to the Home World for their zoo. Gort argues
that they should “randomly sample” the students, and Klaatu is fine with
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just plain “grabbing one” from them. What is the probability that the
student named C is abducted under Gort’s plan and under Klaatu’s plan;
explain.

(4) Let your evidence be E = “This is a coin, only one side of which is an H.”
Suppose you toss this coin and see that it turns up heads 40 times out of
50. You want to toss is one more time. What is your estimate of Pr(H|E)
and why?

(5) Prove to me that, given the same E as before the probability of any coin
toss sequence, in n tosses, is the same. An example of a sequence of three
tosses is HHT; one for four tosses is TTHT, and so on.

(6) What is the probability of getting no heads in n = 4 tosses of a coin.
Assume the same E.

(7) extra Find a general formula for the probability, when tossing a 20-sided
die,2 of getting at least one “20” in any n tosses. hint The probability
that A is true is one minus the probability that A is false.

(8) List one situation where you have an event or observation statement A and
another B such that the probability of A being true is irrelevant to knowl-
edge that B is true. That is, that Pr(A|BE) Pr(B|E) = Pr(A|E) Pr(B|E).
Write out your A, B, and E carefully. Most gambling situations fit this
scenario well.

(9) List one situation where you have an event or observation statement A and
another B such that the probability of A being true is relevant to knowl-
edge that B is true. That is, that Pr(A|BE) Pr(B|E) 6= Pr(A|E) Pr(B|E).
Write out your A, B, and E carefully. Many physical situations fit this
scenario well.

(10) In the fortune cookie example, we estimated that Pr(B+|A+E)
≈ 0.08. What if instead of positive, the test came back negative? That
is, what is Pr(B+|A−E)? Where “A−” means a negative test. First state
what this probability means in words.

(11) If you really understand the fortune cookie problem, then you’ll be able
to tell me what was your friend’s estimate of the probability that he has
lump cancer before he went to the doctor and before he read the fortune
and given your friend knew the sensitivity, specificity, etc. that went into
calculating Pr(B+|A+E)? hint: This is not a trick question.

(12) Odds are one-to-one functions of probability. To calculate the odds, use
this formula odds = p

1−p where p is the probability of interest. What are

the odds of Pr(B+|AE) and Pr(B+|AF E).
(13) Odds ratios are simply the odds of one thing divided by another. What is

the odds ratio of having a cancer given a positive test versus not having
a positive test? That last quantity measures the multiplicative increase
in the odds.

(14) extra Prove the formulas (10) and (11) are correct.

2Sure these exist; haven’t you ever played Dungeons and Dragons?





CHAPTER 3

How to Count

1. One, two, three...

Youtube.com has a video at this URL

http://www.youtube.com/watch?v=wcCw9RHI5mc

The important part is that “v=wcCw9RHI5mc” business at the end, which
essentially means “this is video number wcCw9RHI5mc”. This video is, of
course, different than number wcCw9RHI5md, and number wcCw9RHI5me and
so on. This might be a new way to use the word number to you, but these are
numbers just the same, only the symbols used to write them have changed
from the familiar 0-9. We can notice that the video number contains 11
different slots (count them), each of which is filled with a number or upper
or lower case Latin letter, which means the number is case sensitive; A differs
from a. The question is, how many different videos can YouTube host given
this numbering scheme? Are they going to run out of numbers anytime soon?

That problem is hard, so we’ll start on a simpler one. Suppose the video
numbering scheme only allowed one slot, and that this slot could only contain
a single-digit number, chosen from 0-9. Then how many videos could they
host? They’d have v=0, v=1 and so on. Ten, right? Now how about if they
allowed two slots chosen from 0-9. Just 10 possibilities for the first, and 10
for each of the 0-9 of the first (10 for 0, 10 for 1, etc.), a confusing way of
saying 10× 10. For three slots it’s 10× 10× 10. But you already knew how
to do this kind of counting, didn’t you? That’s how we write numbers!

Suppose the single slot is allowed only to be the lower case letters
a,...,z? This is v=a, v=b, etc. How many in two such slots? Using what
we just learned, it is 26 × 26 = 676. This result was had by the same way
we got 100 in two slots of the numbers 0-9.

So if allow any number, plus any lower or upper case letter in any slot,
we have 10 + 26 + 26 = 62 different possibilities per slot. That means that
with 11 slots we have 62× 62 · · · × 62 = 6211 ≈ 5× 1019, or 50 billion billion
different videos that YouTube can host.

2. Arrangements

How many ways are there of arranging things? In 1977, George Thoro-
good remade that classic John Lee Hooker song, “One Bourbon, One Scotch,

27
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and One Beer.” This is because George is, of course, the spirituous counter-
part of an oenophile; that is, he is a connoisseur of fine spirits and regularly
participates in tastings. Further, George, who is way past 21, is not an id-
iot and never binge drinks, which is about the most moronic of activities
that a person could engage in. He very much wants to arrange his coming
week, where he will taste, each night, one bourbon (B) , one scotch (S),
and one beer (R). But he wants to be sure that the order he tastes these
drinks doesn’t influence his personal ratings. So each night he will sip them
in a different order. How many different nights will this take him? Write out
what will happen: Night 1, BSR; night 2, BRS; night 3, SBR; night 4, SRB;
night 5, RBS; night 6, RSB. Six nights! Luckily, this still leaves Sunday free
for contemplation.

Later, George decides to broaden his tasting horizons by adding Vernors
(the tasty ginger ale aged in oak barrels that can’t be bought in New York
City) to his line up. How many nights does it take him to taste things in
different order now? We could count by listing each combination, but there’s
an easier way. If you have n items and you want to know how many different
ways they could be grouped or ordered, the general formula is:

(12) n! = n× (n− 1)× (n− 2)× · · · × 2× 1

The term on the left, n!, reads “n factorial.” With 4 beverages, this is 4 ×
3× 2× 1 = 24 nights, which is over three weeks! Good thing that George is
dedicated.

3. Being choosy

It’s the day before Thanksgiving and you are at school, packing your
car for the drive home. You would have left a day earlier, but you didn’t
want to miss your favorite class—statistics. It turns out that you have three
friends who you know need a ride: Larry, Curly, and Moe. Lately, they have
been acting like a bunch of stooges, so you decide to tell them that your
car is just too full to bring them along. The question is, how many different
ways can you arrange your friends to drive home with you when you plan
to bring none of them? This is not a trick question; the answer is as easy as
you think. Only one way—that is, with you driving alone.

But, they are your friends, and you love them, so you decide to take just
one. Now how many ways can you arrange your friends so that you take
just one? Since you can take Larry, Curly, or Moe, and only one, then it’s
obviously three different ways, just by taking only Larry, or only Curly, or
only Moe. What if you decide to take two, then how many ways? That’s
trickier. You might be tempted to think that, given there are 3 of them,
that the answer is 3! = 6, but that’s not quite right. Write out a list of
the groupings: you can take Larry & Curly, Larry & Moe, or Moe & Curly.
That’s three possibilities. The grouping “Curly & Larry,” for example, is
just the same as the grouping “Larry & Curly.” That is, the order of your
friends doesn’t matter: this is why the answer is 3 instead of 6. Finally, all
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these calculations have made you so happy that you soften your heart and
decide to take all three. How many different groupings taking all of them
are possible? Right. Only one: by taking all of them.

You won’t be surprised to learn that there is a formula to cover situations
like this. If you have n friends and you want to count the number of possible
groupings of k of them when the order does not matter, then the formula is

(13)

(
n

k

)
=

n!

(n− k)!k!

The term on the left is read “n choose k”. By definition (via some fascinating
mathematics) 0! = 1.

Here are all the answers for the Thanksgiving problem:(
3

0

)
=

3!

3!0!
= 1

(
3

1

)
=

3!

2!1!
= 3(

3

2

)
=

3!

1!2!
= 3

(
3

3

)
=

3!

1!3!
= 1

Don’t worry about the math. The computer will do it for you (we’ll
talk about how in Chapter 5). But there are some helpful facts about this
combinatorial function that are useful to know. The first is that

(
n
0

)
always

equals 1. This means, out of n things, you take none; or it means there is
only one way to arrange no things, namely no arrangement at all.

(
n
n

)
is also

always 1, regardless of what n equals. It means, out of n things, you take
all.

(
n
1

)
always equals n, and so does

(
n
n−1

)
: these are the number of ways of

choosing just 1 or just n − 1 things out of n. As long as n > 2,
(
n
2

)
>
(
n
1

)
,

which makes sense, because you can make more groups of 2 than of 1.

4. The Binomial distribution

We started the Thanksgiving problem by considering it from your point
of view. Now we take Larry, Moe, and Curly’s perspective, who are waiting
in their dorm room for your call. They don’t yet know whether which, or if
any of them, will get a ride with you. Because they do not know, they want
to quantify their uncertainty and they do so using probability. We are now
entering a different realm, where counting meets probability. Take your time
here, because the steps we follow will the same in every probability problem
we ever do.

Moe, reminiscent, recalls an incident wherein he was obliged to poke you
in the eyes, and guesses that, since you were somewhat irked at the time,
the probability that you take any one of the gang along is only 10%. That
is, it is his judgment that the probability that you take him, Moe, is 10%,
which is the same as you would also (independently) take Curly and so on.
So the boys want to figure out the probability that you take none of them,
take one of them, take two of them, or take all three of them.
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Start with taking all three. We want the probability that you take Larry
and Moe and Curly, where the probability of taking each is 10%. Remember
probability rule #2? Those “ands” become “times”: so the probability of
taking all three is 0.1 × 0.1 × 0.1 = 0.001, or 1 in a 1000. Keep in mind:
this is from their perspective, not yours. This is their guess of the chances;
because you may already have made up your mind—but they don’t know
that. Remember that all probability is conditional on evidence, and that the
Stooges’ evidence is difference that yours.

What about taking none of them? This is the chance that you do not take
Larry and you do not take Moe, and you do not take Curly. This is because
taking Larry means not taking the other two. The key word is still “and;”
which makes the probability (1−0.1)×(1−0.1)×(1−0.1) = 0.93 ≈ 0.73, since
the probability of not taking Larry etc. is one minus the probability of taking
him etc. It is, too, because you can either take Larry or not; these are the only
two things that can happen, so the probability of taking Larry or not must
be 1. We can write this using our notation: let A = “Take Larry”, then AF

= “Don’t take him”. Then Pr(A∪AF |E) = Pr(A|E) + Pr(AF |E) = 1, using
probability rule #1. So if Pr(A|E) = 0.1, then Pr(AF |E) = 1 − Pr(A|E) =
0.9. In this case, E is the information dictated by Moe (who is the leader),
which caused him to say Pr(A|E) = 0.1.

How about taking just one? Well, one way this can happen is that you
can take Larry, not take Moe, and not take Curly, and the chance of that
is (using rules #1 and #2 together) 0.1 × (1 − 0.1) × (1 − 0.1) ≈ 0.08; but
you could just as easily have taken Moe and not Larry, or Curly and not
Larry, and the chance you do either of these is just the same as you taking
Larry and not the other two. For shorthand, write M as “Take M” and so
on, and MF as not take M and so on. Thus you could “LMFCF or LFMCF

or LFMFC” (this is written using the Boolean algebra). Using probability
rule #1, we break up this statement into three pieces (“LMFCF ”), and then
use probability rule #2 on each piece (“ands” turn to times), then add the
whole thing up.

You could do all that, but there is an easier way. You could notice
there are three different ways to take just one—which we remember from
our choosing formula, eq. (13). This makes the probability

(
3
1

)
0.08 = 3 ×

0.08 = 0.24. Since we already know the probability of taking one of those
combinations, we just multiply it by the number of times we see it. We could
have also written the answer like this:(

3

1

)
0.11(1− 0.1)2 = 0.24.

And we could also written the first situation (taking all of them) in the same
way (

3

0

)
0.13(1− 0.1)0 = 0.001.
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where you must remember that a0 = 1 (for any a you will come across, even
a = 0).

You see the pattern by now. This means we have another formula to add
to our collection. This one is called the binomial and it looks like this:

(14) Pr(k|n, p,EB) =

(
n

k

)
pk(1− p)n−k.

There is a subtle shift in notation with this formula, made to conform with
tradition. “k” is shorthand for the statement, in this instance, K = “You
take k people.” For general situations, k is the number of “successes”: or,
K = “The number of successes is k”. Everything to the right of the “|” is
still information that we know. So n is shorthand for N = “There are n
possibilities for success”, or in your case, N = “There are three brothers
which could be taken.” The p means, P = “The probability of success is p”.
We already know EB, written here with a subscript to remind us we are in
a binomial situation. This new notation can be damn convenient because,
naturally, most of the time statisticians are working with numbers, and
the small letters mean “substitute a number here,” and if statisticians are
infamous for their lack of personality, at least we have plenty of numbers.
This notation can cause grief, too. Just how that is so must wait until later.

Don’t forget this: in order for us to be able to use a binomial distribution
to describe our uncertainty, we need three things. (1) The definition of a
success: in the Thanksgiving example, a success was a person getting a ride.
(2) The probability of a success is always the same for every opportunity.
(3) The number of chances for successes is fixed.

5. Homework

(1) It turns out that YouTube actually allows more than just numbers and
letters in their video numbers. They also use the symbol “ ” (the under-
score). Now how many videos can they host?

(2) In the 23 April 2008 Wall Street Journal, on the front page, Ford Mo-
tor Company CEO Alan Mulally complained about the “mind-boggling
level of vehicle customization, which jacked up costs. Until recently, for
instance, the Lincoln Navigator offered 128 options on its console alone.”
How many differently optioned Lincoln Navigators can be built if all the
vehicles are the same except for differences in the console?

(3) The daily lottery in New York requires you to pick three different numbers
to win. How many different combinations of three numbers are there?
What are the chances you win?

(4) You just got a new dorm room, and have three roommates, and two bunk
beds. How many different sleeping arrangements are there, assuming, I
hope it isn’t necessary to say, one per bed? Later, one of your roommates
(a football linesman who rarely bathes) insists, in an emphatic way, that
he must have the top bunk facing East. How many arrangements now?

(5) The FAA uses three-capital-letter designators for airport codes; for ex-
ample, lga is La Guardia and dtw is Detroit Metro. How many unique
airport codes can there be?
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(6) You are staying away from home at college for the first time, and have
decided to re-invent yourself. Nobody here knows that you were the kid
that mistakenly ate part of your classmate’s biology project. Time to start
fresh. So you buy an entire new wardrobe, consisting of six shirts, and
three pants. Assuming you’ll have to wear one shirt and one pair of pants
to create an ensemble, how many different ensembles can you wear?

(7) You have discovered that pair of pants 1 does not go with shirts 3 and 4;
and that pants 2 does not go with shirts 1, 5, or 6. How many ensembles
are now possible?

(8) You are a generous soul and decide to forgive Moe and decide to take all
the gang with you. How many seating arrangements are there, assuming
you drive the car?

(9) Part of the binomial formula is pk(1−p)n−k. Explain how this part comes
about, that is, why is it this and not something else? I mean, why are the
exponents on p and (1−p) k and n−k. Can you explain it in terms of the
probability rules you already know? Using the Three Stooges example as
a starting point.

(10) Another lottery question. The multiple-state Mega Millions drawing re-
quires you to guess 5 different numbers from 1 to 56. It also requires you
to pick a “mega” number (after those 5) from 1 to 46. In the first case,
what is the chance that you guess the first number correctly? And the
second? And third through fifth? And the “mega”?

(11) extra: Obviously, the order you guess the balls do not matter: if you
match all 6 you will win. The question before assumes you guess the
numbers in the order that they were drawn. Can you think of a way to
calculate the probability of winning, that is, of matching all 6, where the
order the numbers were drawn do not matter.

(12) extra: Greek sororities and fraternities are designated by two or three
Greek letters, like ΓΩ or ΣΠ∆. How may Greek unique societies are pos-
sible?

(13) extra: Suppose Moe estimates the probability that you take him as 0.1,
and Larry too. But since Curly knows he’s so lovable, he estimates his
probability of going at 0.8. What is the probability (they estimate) that
you take none, one, two, or all three. hint: Do not use the binomial.

(14) extra: You can see that
(
n
2

)
>
(
n
1

)
. With some playing around, it’s

easy to see that
(
n
3

)
>
(
n
2

)
. But it’s also true that

(
n

n−1

)
>
(
n
n

)
and(

n
n−2

)
>
(

n
n−1

)
. Can you find an m such that

(
n
m

)
is larger than any other(

n
k

)
where k 6= m? If you cannot find it, at least make a guess and give a

reason why you chose that guess.



CHAPTER 4

Distributions

1. Variables

Recall that random means unknown. Suppose x represents the number of
times the Central Michigan University football team wins next year. Nobody
knows what this number will be, though we can, of course, guess. Further
suppose that the chance that CMU wins any individual game is 2 out of
3, and that (somewhat unrealistically), a win or loss in any one game is
irrelevant to the chance that they win or lose any other game. We also know
that there will be 12 games. Lastly, suppose that this is all we know. Label
this evidence E. That is, we will ignore all information about who the future
teams are, what the coach has leaked to the press, how often the band has
practiced their pep songs, what students will fail their statistics course and
will thus be booted from the team, and so on. What, then, can we say about
x?

We know that x can equal 0, or 1, or any number up to 12. It’s unlikely
that CMU will lose or win every game, but they’ll probably win, say, some-
where around 2/3s, or 6-10, of them. Again, the exact value of x is random,
that is, unknown.

Now, if last chapter you weren’t distracted by texting messages about
how great this book is, this situation might feel a little familiar. If we instead
let x (instead of k—remember these letters are place holders, so whichever
one we use does not matter) represent the number of classmates you drive
home, where the chance that you take any of them is 10%, we know we can
figure out the answer using the binomial formula. Our evidence then was EB.
And so it is here, too, when x represents the number of games won. We’ve
already seen the binomial formula written in two ways, but yet another (and
final) way to write it is this:

(15) x|n, p,EB ∼ Binomial(n, p).

This (mathematical) sentence reads “Our uncertainty in x, the number of
games the football team will win next year, is best represented by the Bi-
nomial formula, where we know n, p, and our information is EB.” The “∼”
symbol has a technical definition: “is distributed as.” So another way to
read this sentence is “Our uncertainty in x is distributed as Binomial where
we know n, etc.” The “is distributed as” is longhand for “quantified.” Some
people leave out the “Our uncertainty in”, which is OK if you remember it is

33
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there, but is bad news otherwise. This is because people have a habit of im-
buing x itself with some mystical properties, as if “x” itself had a “random”
life. Never forget, however, that it is just a placeholder for the statement X
= “The team will win x games”, and that this statement may be true or
false, and it’s up to us to quantify the probability of it being true.

In classic terms, x is called a “random variable”. To us, who do not need
the vague mysticism associated with the word random, x is just an unknown
number, though there is little harm in calling it a “variable,” because it
can vary over a range of numbers. However, all classical, and even much
Bayesian, statistical theory uses the term “random variable”, so we must
learn to work with it.

Above, we guessed that the team would win about 6-10 games. Where do
these number come from? Obviously, based on the knowledge that the chance
of winning any game was 2/3 and there’d be twelve games. But let’s ask more
specific questions. What is the probability of winning no games, or X = “The
team will win x = 0 games”; that is, what is Pr(x = 0|n, p,EB)? That’s easy:

from our binomial formula, this is
(
n
k

)
pk(1−p)n−k =

(
12
0

)
0.670(1−0.67)12 =

(1 − 0.67)12 ≈ 2 in a million. We don’t need to calculate
(
n
0

)
because we

know it’s 1; likewise, we don’t need to worry about 0.670 because we know
that’s 1, too. What is the chance the team wins all its games? Just Pr(x =
12|n, p,EB). From the binomial, this is 0.6712 ≈ 0.008 (check this). Not very
good!

Recall we know that x can take any value from zero to twelve. The most
natural question is: what number of games is CMU most likely to win?
Well, that’s the value of x that makes

(
12
x

)
0.67x(1 − 0.67)12−x the largest,

i.e. the most probable. This is easy for a computer to do (you’ll learn how in
Chapter 5). It turns out to be 8 games, which has about a one in four chance
of happening. We could go on and calculate the rest of the probabilities, for
each possible x, just as easily.

What is the most likely number of games the team will win is the most
natural question for us, but in pre-computer classical statistics, there turns
out to be a different natural question, and this has something to do with
creatures called expected values. That term turns out to be a terrible mis-
nomer, because we often do not, and cannot, expect any of the values that
the “expected value” calculations give us. The reason expected values are of
interest has to do with some mathematics that are not of especial interest
here; however, we will have to take a look at them because it is expected of
one to do so.

Anyway, the expected value for any discrete distribution, like the bino-
mial, is calculated like this:

(16) Ex(x) = 0× Pr(x = 0|E) + 1× Pr(x = 1|E) + · · ·+ n× Pr(x = n|E)

where discrete means that x can only take on measurable, actual values
(there are other distributions that are called continuous which I’ll describe
below). The expectation (another name for it) is the sum of every value that x
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can be times the probability that x takes those numbers. Think of it as a sort
of probability-weighted average of the xs. The little sub x on the expected
values means “calculate the expected value of the variable with respect to
x”; that is, calculated E(x) with respect to the probability distribution of x.
Incidentally, we can also calculate Ex(x2) or Ex(g(x)), where g(x) is some
function of x that might be of interest to us, and sometimes it can get
confusing what we’re doing, hence placing the subscript as a reminder. As
always, it is important to be precise.

Turns out that there is a shortcut for the binomial, which is Ex(x) = np.
So, for the CMU team, Ex(x) = 12 × 2

3 = 8...which sounds like I’m com-
plaining about nothing, because this is the same as the most likely number
of games won! But what if the probability of winning individual games was
3/5 instead of 2/3? Then (a computer shows us) the most likely number of
games won is 7, but the expected value is Ex(x) = 12 × 3

5 = 7.2. Now, ac-
cording to the rules of football as I understand them, you can only win whole
games; that is, winning the expected number of games is an impossibility.

There is another quantity related the expected value called the variance.
It has a similar birth story and a precise mathematical definition, which for
discrete distributions is (don’t get overly concerned about the math)

Vx(x) = Ex((x− Ex(x))2)

= (0− Ex(x))2 × Pr(x = 0|E) +

· · ·+ (n− Ex(x))2 × Pr(x = n|E).(17)

It’s purpose is to give some idea of the precision of the expected value. Look
at the definition: it is a function of the value of x minus the “expected” value
of x, for each possible value of x (that’s the outer expectation). High values
of variance, relative to the expected value, imply that the expected value
is imprecise; low values have the opposite implication. There is a binomial
shortcut to the variance: Vx(x) = np(1− p). For the CMU football example,
V (x) = 12× 0.67× 0.33 ≈ 2.7.

Why talk about expected values and variances when they are not ter-
ribly informative? Well, let’s be generous and recall that these theoretical
entities had great value in the days before computers. Nowadays, we can
easily calculate the probability that x equals any number, but back in the
technolithic days this could only have been done with great effort. Besides,
the expected value is not too far from the most likely value, and is even the
same sometimes. The variance gives an idea of the plus and minus range of
the expected value, that is, the most likely values x could take. And you
could do it all on the back of an envelope! But since expectations still fill
pages of nearly every statistics book, you at least have to be aware of them.
Next, we learn how to quantify uncertainty the modern way.
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2. Probability Distributions

Remember what will be our mantra: if we do not know the truth of a
thing, we will quantify our uncertainty in that thing using probability. Usu-
ally, we will use a probability distribution, like the binomial. A probability
distribution gives us the probability for every single thing that can happen in
a given situation.

You already know lots of probability distributions (they go by the tech-
nical name “probability mass functions” for discrete data), you just didn’t
know they were called that. Here are two you certainly have memorized,
shown in pictures:
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ba

bili
ty

0.0
0.1

0.2
0.3

0.4
0.5

0.6

H T
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0.0
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0.1
5

0.2
0

1 2 3 4 5 6

The first is for a coin flip, where every single thing that can happen in
a H(ead) or T(ail). The information we are given is Ecoin = “This is a coin
with two sides labeled H and T, and a flip will show one of them.” Given
this information and no other, we get the picture on the left, which shows
the distribution of probability for every single thing that can happen. Easy,
right? It’s just a spike at 0.5 for an H, and another at 0.5 for a T. The total
probability is the sum of the spikes, or 1.

The second is for the roll of a die, where every single thing that can
happen is a 1, or 2, or etc. The information is Edice = “This is a die with
six sides labeled 1, 2,...,6, and a roll will show one of them.” Given just
this information, we get the picture with a spike of 1/6 for every possible
number. Again, the total probability is the sum of the spikes, which is still
1. It is always equal to 1 for any probability distribution.

We can also picture the binomial for the CMU football victories.



2. PROBABILITY DISTRIBUTIONS 37
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Here, it is drawn for three possible values of p: p = 1/5, p = 1/2, and p = 2/3.
Every single thing that can happen is that CMU wins 0 games, 1 games,
etc., up to 12 games. The information we are given is EB = “The probability
of winning any individual game is fixed at exactly p (=1/5, 1/2, or 2/3),
there are n = 12 games, winning or losing any game gives no information
about winning or losing any others, and we will use a binomial distribution
to represent our uncertainty.” If p = 1/5, you can see that there is at least a
reasonable chance, about 7%, that CMU wins no games, while winning all
games is so improbable that it looks close to 0.

Wait a minute, though. It is not 0. It just looks like 0 on this picture.
The total number of games won by CMU is contingent on certain facts of
the universe being true (like the defense not being inept, the quarterback
not being distracted by job proposals or cheerleaders, and so on). Remember
that the probability of any contingent event is between 0 and 1; it is never
exactly 0 or 1. So even though the picture shows that winning all games
when p = 1/5 looks 0, it is not, because that would mean that winning all
12 is impossible. To say something is impossible is to say it has probably 0,
which we know we cannot be so for a contingent event. Incidentally, using
the computer shows that the probability of winning at 12 games is about 4e-
09, which is a decimal point, followed by eight 0s, then a 4, or 0.000000004.
Small, but greater than 0.

The most likely number of games won, with p = 1/5, is 2—there is about
a 28% chance of this happening. What is the expected value? And variance?
(Not very interesting numbers, are they.)

Notice that when we switch to p = 1/2, the chance of winning games
becomes symmetric around 6, the most likely number won. This means that
the chance of winning all 12 is equal to the chance of winning none. Does it
also mean the chances of winning 1 is the same as winning 11?

When p = 2/3, the most likely number of games won is again 8, but
right behind that in probability is 9 games, which is actually more likely
than winning 7, and so on.
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The reason to show three pictures at different values of p is because we
don’t know what the value of p is, but EB requires that we specify a known
value of p, else we cannot draw the picture. We learn how to guess the value
of p later.

3. What is Normal?

What will be tomorrow’s high temperature? This value is, of course,
unknown. But we can always guess. Suppose we guess x◦ C. Are we certain
it will be x◦ C? No. It may be a little higher, it may be a little lower. It’s
unlikely to be too high or too low, or too far from x◦ C. So, the question
you’re undoubtedly asking yourself is: “Hasn’t some brilliant and intriguing
statistician come up with a way that I can quantify my uncertainty in x?”
Why, yes, of course (and aren’t all statisticians brilliant and intriguing?).
It’s called the normal, sometimes a Gaussian, distribution.

This distribution is different than a binomial in many ways. With the
binomial, we had a fixed number of chances, or trials, for successes to occur.
With the normal, there is no such thing as a success, and no fixed number of
chances, except for one: the outcome itself. The binomial was useful for dis-
crete numbers, while the normal is used for...something else, to be discussed
below.

Here is one of the ways we can write it:

(18) x|m, s,EN ∼
1√

2πs2
e−

(x−m)2

2s2 .

m is called the central parameter and s2 is called the spread parameter:
sometimes, s, the square root of s2, is called the standard deviation parameter
or standard deviation parameter. Some books will, using sloppy language,
call m the mean and s the standard deviation. You will never make this
mistake! The mean and standard deviation are entirely different creatures
(we learn about them later). The e is equal to about 2.718, and π is about
3.142. Anyway, it is a sufficiently complicated formula such that we’ll never
calculate it by hand.

Let’s review this to make certain where we are. Just like using a binomial,
the x is shorthand for X = “The value of the temperature will be x.” Certain
information is given as known: them and the s2, plus EN = “We use a normal
distribution to quantify our uncertainty in X.” Looking at the formula (18)
might not show it, but there are some screwy things going on with the
normal. First recall that the probability distribution gives us the probability
of every single thing that can happen. So just what is every single thing that
can happen in a normal distribution?

Well, (this is true for any situation that uses a normal and not just the
temperature example), x can equal, say, 18.0000001, or 18.0000000001, or
-19.124828184341, and on and on. Turns out, with the mathematical device
used for creating normal distributions, an infinity of things can happen: every
number between negative and positive infinity is possible with a normal.
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How many numbers is that? So many that they can’t be counted. Numbers
like this are said to be continuous, that is, there is an unbroken continuity
between any two numbers a and b. How many numbers are there between
a = 17 and b = 82? An infinity. How many between a = 6.01 and b = 6.1?
An infinity. The binomial, on the other hand, used discrete numbers, where
there is a definite space between numbers (the outcome could only be certain,
fixed numbers, there was no continuity).

Normal distributions are used to specify the uncertainty of a wide range
of variables: from blood pressures, to real estate prices, to heat in chem-
ical equations, to just about anything. But there is a huge problem with
this. Recall our primary purpose in using probability distributions: they are
meant to quantify our uncertainty in some thing about which we do not
know the value. Normal distributions, though ubiquitous, never accurately
capture our uncertainty in any real life X.

This is because the uncertainty in any real-life thing cannot be exactly
quantified by a normal, because no real thing has an infinite number of
possible values. Also, no real thing, like temperature, has a maximum going
toward positive infinity, nor a minimum going toward negative infinity. We
can accurately measure outdoor temperature to maybe a tenth of even a
hundredth of a degree (eg. 18.11◦C). But we cannot measure it to infinite
precision. And the temperature of any thing can never be less than absolute
zero (given certain physical arguments), and certainly cannot be infinitely
high.

All these complications mean that equation (18) isn’t real a probability
distribution at all: instead, it is called a density. We first have to make it
into a probability (via some hidden mathematics). When we do, any normal
distribution says that

Pr(x|m, s,EN ) = 0.

In English, the probability that x takes any value is always 0, no matter
what the value of x is, no matter what m is, and no matter what s is. The
probability that x equals any number is always 0 (no continuous number
can be measured to infinite precision). To help see this, imagine I pick a
number out of an infinite number of choices. What are the chances that
you guess this number correctly? Zero. Even worse, I cannot even really
pick my number! Some (an infinite amount of) continuous numbers cannot
even be measured, though we know how to compute them; that is, nobody
can ever fully write one down, because that would require writing down an
infinite number of digits. Worse still, most (another, larger kind of infinity
of) continuous numbers, we don’t even know how to calculate their digits!
Incidentally, not all mathematicians are happy about using these kinds of
numbers. After all, if you cannot actually write down or discover a number,
it has little use in measuring real things. See the books by Chaitin (2005)
and Kline (1980) for more information on this odd subject.
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Continuous numbers are a major burden, which seems to put us at an
impasse. Since we can’t answer questions about the truth of statements like
X = “The value of tomorrow’s maximum temperature will be x”, we are
forced to change the question and instead ask about intervals. For example,
X = “The value of tomorrow’s maximum temperature will be less than x.” X
no longer makes a statement about a single number, but a range of numbers,
namely, all those less than x (how many numbers are less than x?). Other
examples of intervals: all the numbers between 0 and 1; all numbers smaller
than 4; all numbers less than 17 and greater than 52; etc. Pick any two
numbers, and as long as they are not the same, you have an interval. Then,
for example,

Pr(x < 4|m, s,EN ) = a

(where a is some real number) can be answered. Again, to emphasize, we
cannot ascertain the truth of statements like X = “The value of tomorrow’s
maximum temperature will be 20◦C.” We can only quantify the uncertainty
of statements about intervals like X = “The value of tomorrow’s maximum
temperature will be less than or equal to 20◦C.”

If the normal can’t handle questions we need answered, like giving us the
probability of single numbers, why is it used? The biggest reason is habit,
another is ignorance of any alternative. But there’s more to it than that.
Let’s go back to our temperature example to see why. We know, say, in our
situation that we can measure temperature to the nearest tenth of a degree.
We can even suppose that temperature can only even be at every tenth
degree1, so that the temperature can be 20◦C or 20.1◦C, but it cannot be,
say, 20.06◦C or any other numbers that aren’t even tenths of a degree. Using
a normal distribution to represent our uncertainty will give probability to
statements like Y = “Tomorrow’s temp will be between, and not including,
20◦C or 20.1◦C.” We then know that this probability is 0, which is to say, the
statement is false, which we know based on our knowledge that temperature
can only be at tenths of a degree. But the normal will say something like
Pr(20◦ < y < 20.1◦|m, s,EN ) = 0.0001 (it is saying there is a probability
of seeing values that are impossible). Although this is a mistake, is it a big
one?

“Ah, so what,” you say to yourself, “this is so small a probability as not
to be worthy of my attention. The normal distribution will give me an answer
that is close enough.” You might be right, too. In later Chapters, we’ll have
to see if the normal makes a reasonable approximation to what we really
need. Besides, if you don’t want to use a normal distribution, you still have to
use something. What?2 Using a normal distribution does allow you to bypass
two very tricky problems. Remember that a normal distribution, regardless

1There is plenty of evidence the universe is set up so that temperature, and every
other physical variable, is discrete like this: that is, continuous numbers are mathematical,
not physical, creatures.

2This is a poor argument. Because we don’t know what distribution to use, does not
mean we should use anything we can get our hands on.
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of the values of m or s, says something about all numbers going towards
positive and negative infinity. If you eschew the normal in the temperature
example, then you at least have to say what are the maximum and minimum
possible temperature. Do you know? I mean, do you know with certainty?

Actually, in many cases, you will know with certainty, or to within a
certain tolerance. Temperature has to be measured by a device, like a ther-
mometer. That thermometer will not be able to register temperatures below
some number, nor will it be able to register above some number. Many cases
are like this: the situation itself dictates the limits. Later, we’ll look at test
scores, which also have a built in limit (0 and 100).

But if you cannot ascertain the limits, then you have, in a sense, double
uncertainty: the future value of the temperature, plus some uncertainty in
the distribution you use in representing that uncertainty. This situation is
already beyond most statistics books, even the tough ones, so for now, until
we talk about the subject of modelling, we’ll ignore this question and say
that the normal is “close enough.” But we will always remember that it will
never be best.

Whew. A lot of facts and we haven’t even thought about our example.
So why bring them up? To show you now that people are too certain of
themselves. Normal distributions are so often used by that great mass of
people who compute their own statistics, that you might think there are no
other distributions. Since we now know that normals can only be, at best,
approximations, when we hear somebody authoritatively state a statistical
result must be believed, and we learn they used a normal to quantify their
uncertainty, we know they are too confident. We’ll meet a lot more of this
kind of thing as we go along.

On to something more concrete. Let’s look at an abbreviated picture of a
normal distribution and see what we can learn (it is abbreviated because we
cannot picture the whole thing). The point m is the central point, and is the
most likely value (not forgetting that no single value is actually possible—
just weird, right?); m plus or minus s contains about 68% of all possible
values of x, and m plus or minus about 2 times s contains about 95% of all
possible values of x.
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x

m−2s m−s m m+s m+2s

What does this mean? Specifically, that Pr(m− s < x < m+ s|m, s,EN ) ≈
0.68 and Pr(m−2s < x < m+2s|m, s,EN ) ≈ 0.95. The normal is symmetric
about the point m: meaning there is equal probability of being above m as
being below it. Incidentally, the expected value of x is m, and the variance
s2, which is easy to remember.

You might have noticed that there is no y-axis on the picture. This is to
remind you that the curve itself does not represent probability. The (miss-
ing) y-axis is instead something called the density, which is the continuous-
number equivalent of probability. It cannot picture the probability, because
the probability of x equaling any number is 0. Because of this, these pictures
are only useful for estimating probability by area under the curve. The en-
tire area under the curve equals 1, just as it did with the coin flip and dice
example, because this picture shows the probability of every single thing
that can happen, and every thing that can happen is any number between
−∞ and +∞. Since the actual value of x will take place somewhere in this
interval, the area must equal 1. An example: what is Pr(x < m|m, s,EN ).
By symmetry, it is 0.5, because it is half the area under the curve, from the
point m to −∞ (everything to the left of the thin, dotted curve starting at
m). Another example, Pr(x > m + 2s|m, s,EN ), which we know is about
0.025, is that tiny area from the point m+2s to +∞ (everything to the right
of the thin, dotted curve starting at m + 2s). Why do we know it is about
0.025? Because the probability of numbers in the interval (m−2s,m+2s) is
0.95, which leaves 0.05 probability of numbers outside that interval. Then,
since the normal is symmetric, this leaves 0.025 probability for numbers less
than m− 2s and 0.025 for numbers greater than m+ 2s.

One more picture showing two normal distributions. The curve to the
left has a smaller spread parameter and central parameter than the one to
the right. The area under either curve is 1 (it is always equal to 1 for any
distribution). Notice that the one with the larger spread parameter is wider,
meaning you are less certain about the values of x. Obviously, then, smaller
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spread parameters mean you are more certain, in the sense that the most of
the probability is for a narrower ranges of xs.

x

If you quantified the uncertainty in x using the distribution to the left, and I
used the one to the right, which of us thinks there is a higher probability of
large values of x? For example, pick the point indicted by the dotted vertical
line. Obviously, I am more certain that I will see values this large or larger
because the area under the curve to the right of the dotted line is larger
for me than for you. You can see that we can answer lots of questions like
this by reference to pictures. Next Chapter, we’ll learn how to do this on a
computer.

Nonsense alert! You sometimes hear this, “Our observation was drawn
from a normal distribution” (with given parameter values). When this person
says “drawn” they do not mean they drew a picture like we just did. They
instead intend that nature (the modern equivalent of a deity) “randomly
generated” the observation using a normal. Somehow, through randomness,
the value appeared, almost as if by magic. Well, dear reader, something
caused that observation to take the value it did. If you knew the exact casual
mechanism, including the initial conditions, the starting point that gives rise
to a particular value, then you would have known in advance exactly what x
would be. However, just because you do not know, does not mean the cause
did not exist. If you want clarification of this, see the gorgeous Chapter 10
of Jaynes (2003) wherein he discusses the physics and probabilities of coin
flips.

4. Homework

(1) The CMU football score was called a “random variable”. Write down five
other random variables.

(2) I teach a class called Statistics 101. There are 36 students signed up for
this class. Before I come to class each day, I guess how many students will
actually show up (I know you will be shocked, but some people actually
miss class!). Obviously, I do not know for certain, the exact number. How
do I express my uncertainty in this number? What is everything that can
happen in this case? Which probability distribution would best represent
my uncertainty?
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(3) Why, in a probability distribution, does the sum of the probabilities of
every single thing that can happen add up to 1?

(4) A famous statistical problem came from a lady who claimed she could tell
by its taste whether her tea was poured into the cup before the milk, or
that the milk was poured first and the tea afterwards. This is, of course,
an extraordinary claim, and it was decided to test her in an experiment.
Five servings of tea were given to her, some with the tea poured first,
some with the milk first (she obviously could not see which). She guessed
correctly (which was poured first) four times. So, what do you think?
Does she have the ability she claims? Why or why not?

(5) Think of a situation where the outcome is “random” but where your un-
certainty is approximately quantified with a normal distribution. Justify
your answer!

(6) I earlier said that if I had a bucket filled with continuous numbers, such
as are represented by normal distributions, I could not even pick one out.
That is, not only is the probability of seeing any number 0, no continuous
number could ever be picked. Why?

(7) Draw a picture with two normal distributions (both on the same picture)
where they both have the same central parameter, but different spread
parameters. Call the one with the larger spread parameter B (the smaller
is A). Which distribution, A or B, has a higher probability of having
very large values? Meaning, if you were to come across two observations,
where the uncertainty in the first is quantified by distribution A and the
second by distribution B, which is of these observations is more likely to
be larger? How about very small values?

(8) Now draw two normals, but this time they both have the same spread
parameter but different central parameters (label the one with the larger
central parameter A). Which one now has a higher probability of very
large values and very small values.

(9) It is often said that the distribution of students’ grades in statistics classes
is a “bell curve”, that is, that they are normally distributed. Is that strictly
true? Why or why not?

(10) Calculate the expected number of a die roll (dice have the numbers 1
through 6 on them, as you know, with equal probability of seeing each
side). Comment on this number.

(11) The exquisite game of Petanque starts by throwing a tiny ball, a cochonet,
a distance of six to ten meters. Players, in teams, then take turns throwing
manly steel balls3, or boules, which are about the size of a apples, and try
to get them as close to the cochonet as possible. Points are awarded by
the number of boules of your team that are closer to the cochonet than the
nearest opponent’s boule. Throws are rarely perfect, of course; meaning,
that the boules aren’t always right next to the cochonet; they lie some
distance away. Suppose, then, that I step up and throw my first boule.
Do you know how far away my boule will be from the cochonet? How
would you quantify your uncertainty in this distance? Which probability
distribution best describes your uncertainty?

3This is contrasted with the similar Italian game Bocce, which uses meek wooden
balls.
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(12) The picture of the normal distribution was said to be abbreviated because
we cannot picture the whole thing. Why?

(13) extra See if you can find, in the popular media, somebody using the
normal distribution (or bell curve). Fully cite the source. Do not cite a
source that has anything to do with the results of a scientific study (these
are obviously far too common). Try looking in business areas (advertising,
marketing, and so on).

(14) extra In the CMU football example, with p = 1/2, we said the probabil-
ity of winning games was symmetric about 6 games, and that the proba-
bility of winning no games was the probability of winning all 12. Try and
prove this mathematically using the binomial formula. Then show that
the probability of winning 1 game is the same as winning 11.





CHAPTER 5

R

1. R

R (R Development Core Team, 2008) is a fantastic, hugely supported,
rapidly growing, infinitely extensible, operating-system agnostic, free and
open source statistical software platform. Nearly everybody who is anybody
uses R, and since I want you to be somebody, you will use it, too. Some
things in R are incredibly easy to do; other tasks are bizarrely difficult. Most
of what makes R hard for the beginner is the same stuff that makes any piece
of software hard; that is, getting used to expressing your statistical desires in
computerese. As such an environment can be strange and perplexing at first,
some students experience a kind of peculiar stress that is best described by
example. Here is a video from a Germany showing a young statistics student
who experienced trouble understanding R:

http://youtube.com/watch?v=PbcctWbC8Q0

Be sure that this doesn’t happen to you. Remember what Douglas Adams
said: Don’t panic.

The best way to start is by going to r-project.org and click the CRAN

under the Download heading. You can’t miss it. After that, you have to
choose a mirror, which means one of the hundreds of computers around the
world that host the software. Obviously, pick a site near you. Once that’s
done, and choose your platform (your operating system, like Linux or one
of the others), and then choose the base package. Step-by-step instructions
are at this book’s website: wmbriggs.com/book. It is no more difficult to
install than any other piece of software.

This is not the place to go over all the possibilities of R; just the briefest
introduction will be given, because there are far better places available online
(see the book website for links). But there are a few essential commands that
you should not do without in Table 1.

The Appendix gives a fuller list of R commands.
It is important to understand that R is a command-line language, which

we may interpret as meaning that all commands in R are functions which
must be typed into the console. These are objects that are a command name
plus a left and right parenthesis, with variables (called arguments) stuck in
between, thus: plot(x,y). Remember that you are dealing with computers,
which are literal, intolerant creatures, and so cannot abide even the slightest
deviation from its expectations. That means, if instead of plot(x,y), you

47
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Table 1. Useful R commands.

Command Description
help(command) Does the obvious: always scroll down to

the bottom of the help to see examples of
the command.

?command Same as help()

apropos(’string’) If you cannot remember the name of a
command—and I always forget—but re-
member it started with co–something,
then just type apropos(’co’) and you’ll
get a complete list of commands that have
co anywhere in their names.

c() This is the concatenation function: typing
c(1,2) concatenates a 2 to 1, or sticks on
the end 1 the number 2, so that we have
a vector of numbers.

type lot(x,y), or plot x,y), or plot(,y), or plot(x,y things will go awry.
R will try to give you an idea of what went wrong by giving you an error
message. Except in cases like that last typo, which will cause you to develop
stress lines, because all you’ll see is this

+

and every attempt of yours to type anything new, or hit enter 100 times, will
not do a thing except give you more lines of + or other screwy errors. Because
why? Because you typed plot(x,y; that is, you typed a left parenthesis
(right before the x) and you never “closed” it with a right parenthesis, and
R will simply wait forever for you to type one in.

The solution is to enter a right parenthesis, or hit

ctrl+c

which means the control key plus the c key simultaneously, which “breaks”
the current computation.

Using R means that you have to memorize (!) and type in commands
instead of using a graphical user interface (GUI), which is the standard
point-and-click screen with which you are probably familiar. It is my experi-
ence that students who are not used to computers start freaking out at this
point; however, there is no need to. I have made everything very, very easy
and all you have to do is copy what you see in the book to the R screen. All
will be well. I promise.

GUIs are very nice things, incidentally, and R has one that you can
download and play with. It is called the R Commander. Like all GUIs, some
very basic functionality is included that allows you to, well, point and click
and get a result. Problem is, the very second you want to do something
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Table 2. R commands for binomial distributions.

dbinom The probability of density function: given the size,
or n, and prop, or p, this calculates the probability
that we see x successes; this is equation (14).

pbinom The distribution function, which calculates the prob-
ability that the number of successes is less than or
equal to some a.

qbinom This is the “quantile” function, which calculates,
given a probability from the distribution function,
which value of q it is associated with. This will be
made clear with some examples with the normal dis-
tribution later.

rbinom This generates a “random” binomial number; and
since random means unknown, this means it gener-
ates a number that is unknown in some sense; we’ll
talk about this later.

different than what is available from the GUI, you are stuck. With statistics,
we often want to do something differently, so we will stick with the command
line.

The best reason for typing in—and saving—your commands, and not
point and clicking, is that you can save them! Just today, a client emailed
me and said row 122 of the data was a mistake and should be removed.
Now, if I had to go through her analysis again, mousing up to the analysis
selection, pointing and clicking this and that, I’d be in a world of pain,
because what I did for her was complex. But with the commands I used
all neatly typed and stored, all I had to do was read in the data again, cut
and paste my commands, and I was finished in minutes. Every time you get
up from the computer, when using a GUI, you have to start from scratch.
Typing—and saving—your commands saves you more time than you will
know what to do with.

2. R binomially

By now, you are eagerly asking yourself: “Can R help up with those bino-
mial calculations like in the Thanksgiving example?” Let’s type apropos(’bino’)
and see, because, after all, ‘bino’ is something like binomial. The most likely
function is called binomial, so let’s type ?binomial and see how it works.
Uh oh. Weird words about “family objects” and the function glm(), and
that doesn’t sound right. What about one of the functions like dbinom()?
Jackpot. We’ll look at these in detail, since it turns out that this structure of
four functions is the same for every distribution. The functions are in Table
2.
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Let’s go back to the Thanksgiving example, which used a binomial. Moe
can calculate, given n = size = 3, p = prob = 0.1, his probabilities using R:

dbinom(0,3,.1)

which gives the probability of taking nobody along for the ride. The answer
is [1] 0.729. The “[1] in front of the number just means that you are
only looking at line number 1 of the output. If you asked for dozens of
probabilities, for example, R would space them out over several lines. Let’s
now calculate the probability of taking just 0, just 1, etc.

dbinom(c(0,1,2,3),3,.1)

where we have “nested” two functions into one: the first is the concatena-
tion function c(), where we have stuck the numbers 0 through 3 together,
and which shows you the dbinom() function can calculate more than one
probability at a time. What pops out is

[1] 0.729 0.243 0.027 0.001;

that is, the exact values we got in Chapter 3 for taking 0 or 1 or 2 etc. along
for the ride. Now we can look at the distribution function:

pbinom(c(0,1,2,3),3,.1);

and we get
[1] 0.729 0.972 0.999 1.000.

This is the probability of taking 0 or less, 1 or less, 2 or less, and 3 or less.
The last probability very obviously has to be 1, and will always be 1 for any
binomial (as long as the last value in the function c(0,1,...,n) equals n).

There turns out to be a shortcut to typing the concatenation function
for simple numbers, and here it is:

c(0,1,2,...,n) = 0:n.

So we can rewrite the first function as dbinom(0:3,3,.1) and get the same
results.

We can nest functions again and make pretty pictures

plot(dbinom(0:3,3,.1))

And that’s it for any binomial function. Isn’t that simple? (The answer
is yes.) The commands never change for any binomial you want to do.

3. R normally

Can R do normal distributions as well? Can it! Let’s type in apropos(’normal’)

and see what we get. A lot of gibberish, that’s what. Where’s the normal dis-
tribution? Well, it turns out that computer programmers are a lazy bunch,
and they often do not use all the letters of a word to name a function (too
much typing). Let’s try apropos(’norm’) instead (which no matter what
should give us at least as many results, right? This is a question of logic,
not computers.). Bingo. Among all the rest, we see dnorm and pnorm etc.,
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just like with the binomial. Now type ?dnorm so we can learn about our
fun function. Same layout as the binomial; only difference being we need
to supply a “mean” and “sd” (the m and s). Sigh. This is an example of R
being naughty and misusing the terminology that I earlier forbade: m and
s are not a mean and standard deviation. They are parameters. It’s a trap
too many fall into. We’ll work with it, but just remember “mean” and “sd”
actually imply our parameters m and s.

You will recall from our discussion of normals that we cannot compute
a probability of seeing a single number (and if you don’t remember, shame
on you: go back and read Chapter 4). The function dnorm does not give
you this number, because that probability is always 0; instead, it gives you
a “density”, which means little to us. But we can calculate the probability
of values being in some interval using the pnorm function. For example, to
calculate Pr(x < 10|m = 10, s = 20,EN ), use

pnorm(10,10,20)

and you should see [1] 0.5. But you already knew that would be the answer
before you typed it in, right? (Right?) Let’s try a trickier one: Pr(x < 0|m =
10, s = 20,EN ); type pnorm(0,10,20) and get [1] 0.3085375. So what is
this probability: Pr(x > 0|m = 10, s = 20,EN ) (x greater than 0)? Think
about it. x can either be less than or greater than 0; the probability it is so
is 1. So Pr(x < 0|m = 10, s = 20,EN ) + Pr(x > 0|m = 10, s = 20,EN ) = 1.
Thus, Pr(x < 0|m = 10, s = 20,EN ) Pr(x > 0|m = 10, s = 20,EN ) =
1− Pr(x < 0|m = 10, s = 20,EN ). We can get that in R by typing

1-pnorm(0,10,20)

and you should get [1] 0.6914625, which is 1− 0.3085375 as expected.
By the way, if you are starting to feel the onset of a freak out, and

wonder “Why, O why, can’t he give us a point and click way to do this!”
Because, dear reader, a point and click way to do this does not exist. Stop
worrying so much. You’ll get it.

What is Pr(15 < x < 18|m = 15, s = 5,EN ) (which might be rea-
sonable numbers for the temperature example)? Any interval splits the
data into three parts: the part less than the lower bound (15), the part
of the interval itself (15-18), and the part larger than the upper bound
(18). We already know how to get Pr(x < 15|m = 15, s = 5,EN ), which is
pnorm(15,15,5), and which equals 0.5. We also know how to get Pr(x >
18|m = 15, s = 5,EN ), which is 1-pnorm(18,15,5), and which equals
0.2742531. This means that Pr(x < 15 or x > 18|m = 15, s = 5,EN ), using
probability rule number 1, is 0.5+0.2742531 = 0.7742531. Finally, 0.7742531
is the probability of not being in the interval, so the probability of being in
the interval must be one minus this, or 1− 0.7742531 = 0.2257469. A lot of
work. We could have jumped right to it by typing

pnorm(18,15,5)-pnorm(15,15,5).
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This is the way you write the code to compute the probability of any
interval—remembering to input your own m and s of course!

4. Advanced

. You don’t need to do this section, because it is somewhat more com-
plicated. Not much, really, but enough that you have to think more about
the computer than you do the probability.

Our goal is to plot the picture of a normal density. The function dnorm(x,15,5)

will give you the value of the normal density, with an m = 15 and s = 5, for
some value of x. To picture the normal, which is a picture of densities for
a range of x, we somehow have to specify this range. Unfortunately, there
is no way to know in advance which range you want to plot, so getting the
exact picture you want takes some work. Here is one way:

x = seq(-4,4,.01)

which gives us a sequence of numbers from -4 to 4 in increments of 0.01.
Thus, x = −4.00,−3.99,−3.99, . . . , 4. Calculating the density of each of
these values of x is easy:

dnorm(x)

where you will have noticed that I did not type a m or s. Type ?dnorm

again. It reads dnorm(x, mean=0, sd=1, log = FALSE). Ignoring the log

= FALSE bit, we can see that R supplies helpfully default values of the pa-
rameters. They are default, because if you are happy with the values chosen,
you do not have to type in your own. In this case, m = 0 and s = 1, which
is called a standard normal. Anyway, to get the plot is now easy:

plot(x,dnorm(x),type=’l’)

This means, for every value of x, plot the value of dnorm at that value. I
also changed the plot type to a line with type=’l’ , and which makes the
graph prettier. Try doing the plot without this argument and see what you
get.

5. Homework

(1) Google the R reference card and download it. This wonderful sheet,
by Tom Short, of frequently used commands is invaluable. You won’t use
98% of these, and the sheet is bound to look a little scary at first, but you
will love it. All commands are organized into topics, making them easy
to find.

(2) Type demo(graphics) then demo(persp) in the command window, and
follow the instructions. This is to show you the wide range of pretty
pictures you can get with R.

(3) Open a text file and call it myRcode.R. Save it anywhere you like, but save
it as a text file. Do not save it as a–God help us–Microsoft Word file. In
that file, you will type all the commands that you want R to run. When
you do want R to run a particular line, cut and paste that line from the
file myRcode.R to R. Why do this? So you can have a record of all your
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commands, and so you don’t have to retype them over and over again.
Microsoft Word files insert many, many hidden characters that will screw
up R. Why can’t you see them? They are hidden. Don’t ask questions like
this.

(4) Calculate the probability that the CMU football teams wins x = 0, x =
1, . . . , x = 12 games, using the information from the previous Chapter.
Round your answers! Please do not try to write out 43 digits for each
probability. Cut and paste the results and print them if you like.

(5) dbinom(0,10,.5) calculates the probability of getting 0 heads in 10 flips
of a coin (right?). Write down the R code to calculate the probability
of getting at least one head. hint: getting at least one head means not
getting zero heads.

(6) What is the probability of seeing an x = 7 where your uncertainty in x is

represented by a normal distribution with parameters 7 and
√

10?
(7) Suppose before you decide to take anybody for the Thanksgiving trip, you

learn that Moe and Curly’s brother Shemp showed up, so now there are
4 people who need a ride. Describe the situation in terms of probability
and calculate every single thing that can happen.

(8) What is Pr(x < −10 or x > 5|m = −5, s = 3,EN )
(9) What is pnorm(0)? Try to do this in your head first. Either way, explain

why the number is what it is.





CHAPTER 6

Normalities & Oddities

1. Standard Normal

Suppose x|m, s,EN ∼ N(m, s), then there turns out to be a trick that
can make x easier to work with, especially if you have to do any calculations
by hand (which, nowadays, will be rarely). Let

z =
x−m
s

Then z|m, s,EN ∼ N(0, 1). It works for any m and s. Isn’t that nifty? Lots
of fun facts about z can be found in any statistics textbook that weighs
over 5 pounds (these tidbits are usually in the form of impenetrable tables
located in the back of the books; for no reason except professorial inertia,
nearly all statistics students still have to learn to read this archaic tables).

What makes this useful is that Pr(z > 2|0, 1,EN ) ≈ Pr(z > 1.96|0, 1,EN ) =
0.025 and Pr(z < −2|0, 1,EN ) ≈ Pr(z < −1.96 |0, 1,EN ) = 0.025: or, in
words, the probability that z is bigger than 2 or less than negative 2 is about
0.05, which is a magic (I mean real voodoo) value in classical statistics. We
already learned how to do this in R, Chapter 5.

In Chapter 4, a homework question explained the rules of petanque,
which is a game more people should play. Suppose the distance the boule
lands from the cochonette is x centimeters. We do not know what x will be
in advance, and so we (approximately) quantify our uncertainty in it using
a normal distribution with parameters m = 0 cm and s = 10 cm. If x > 0
cm it means the boule lands beyond the cochonette, and if x < 0 cm is
means the boule lands in front of the cochonette. You are out on the field
playing, far from any computer, and the urge comes upon you to discover the
probability that x > 30 cm. First thing to do is to calculate z which equals
(30cm − 0cm)/10cm = 3 (the cm cancel). What is Pr(z > 3|0, 1,EN )? No
idea; well, some idea. It must be less than 0.025, since we have all memorized
that Pr(z > 2|0, 1,EN ) ≈ 0.025. The larger z is, the more improbable it
becomes (right?). Let’s say as a guess 1%. When you get home, you can
open R and plug in 1-pnorm(3) and see that the actually probability is
0.1%, so we were off by an order of magnitude (a power of 10), which is a
lot, and which proves once again that computers are better at math than
we are.
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Figure 1. Upper panel: two normal distributions. The dot-
ted line is one with are larger central parameter. The lower
left panel expands the region from 3.5 to 5. The lower right
divides the probability of the dotted line by the solid line.

2. Nonstandard Normal

The standard normal example is useful for developing your probabilistic
intuition. Since normal distributions are used so often, we will spend some
more time thinking about some consequences of using them. Doing this will
give you a better feel for how to quantify uncertainty.

Figure 1 is a picture of two normal distributions. The one with the
solid line has m1 = 0 and s1 = 1; the dashed line has m2 = 0.5 and
also s2 = 1. In other words, the two distributions differ only in their central
parameter, they have the same spread parameter. Obviously, large values are
more likely according to distribution 2, and smaller values are more likely
given distribution 1, as a simple consequence of m2 > m1. However, once
we get to values of about x = 4 or so, it doesn’t look like the distributions
are that different. (Cue the spooky music.) Or are they?.

Under the main picture are two others. The one on the left is exactly
like the main picture, except that it focuses only on the range of x = 3.5 to
x = 5. If we blow it up like this, we can see that it is still more likely to see
large values of x using distribution 2. How much more likely? The picture on
the right divides the probabilities of seeing x or larger with distribution 2 by
distribution 1, and so shows how much more likely it is to see larger values
with distribution 2 than 1. For example, pick x = 4. It is about 7.5 times
more likely to see an x = 4 or larger with distribution 2. That’s a lot! By the



2. NONSTANDARD NORMAL 57

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

Fr
eq

ue
nc

y

3.5 4.0 4.5 5.0

0e
+0

0
4e

−0
4

8e
−0

4

x

Fr
eq

ue
nc

y

3.5 4.0 4.5 5.0
3

4
5

6
7

8
x

Ra
tio

Figure 2. Like Figure 1, but for two normal distributions,
the dashed line with a larger spread parameter.

time we get out to x = 5, we are 12 times more likely to see values this large
with distribution 2. The point is that even very small changes in the central
parameters lead to large differences in the probabilities of “extreme”, values
of x.

Figure 2 again shows two different distributions, this time with m1 =
m2 = 0 with s1 = 1 and s1 = 1.1. In other words, both distributions have
the same central parameters, but distribution 2 has a spread parameter
that is slightly larger. The normal density plots do not look very different,
do they? The dashed line, which is still distribution 2, has a peak slightly
under distribution 1’s, but the differences looks pretty small.

The bottom panels are the same as before. The one on the left blows
up the area where x > 3.5 and x < 5. A big difference still exists. And the
ratio of probabilities is still very large. It’s not shown, but the plot of the
right would be duplicated (or mirrored, actually) if we looked at x > −5
and x < −3.5. It is more probable to see extreme events in either direction
(positive or negative) using distribution 2.

The surprising consequence is that very small changes in either the cen-
tral parameter or the spread parameter can lead to very large differences at
the extremes. Examples of these phenomena are easily found in real life, but
my heightened political sensitivity precludes me from publicly pointing any
of these out.
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3. Intuition

We have learned probability and some formal distributions, but we have
not yet moved to statistics. Before we do so, let us try to develop some intu-
ition about the kinds of problems and solutions we will see before getting to
technicalities. There are a number of concepts that will be important, but I
don’t want to give them a name, because there is no need to memorize jar-
gon, while it is incredibly important that you develop a solid understanding
of uncertainty.

The well-known Uncle Ted’s1 chain of Kill ‘em and Grill ‘em Vension
Burger restaurants sell both Coke and Pepsi, and their internal audit shows
they sell about an equal amount of each. The busy Times Square branch of
the chain has about 5000 customers a day, while the store in tiny Gaylord,
Michigan sees only about 100 customers. Which location is more likely to
sell, on any given day, at least 2 times more Pepsi than Coke?

A useful technique for solving questions like this is exaggeration. For
instance, the question is asking about a difference in location. What differs
between those places? Only one thing, the number of customers. One site
gets about 5000 people a day, the other only 100. Let’s exaggerate that
difference and solve a simpler problem. For example, suppose Times Square
still gets 5000 a day, but Gaylord only gets 1 a day. The information is that
selling a Coke is roughly equal to the probability of selling a Pepsi. This
means that, at Gaylord, to that 1 customer on that day, they will either sell
1 Coke or 1 Pepsi. If they sell a Pepsi, Gaylord has certainly sold more than
2 times as much Pepsi as Coke. The chance of that happening is 50%. What
is two times as much Pepsi as Coke at Times Square? A lot more Pepsi,
certainly. So it’s far more likely for Gaylord to sell a greater proportion of
Pepsi because they see fewer customers. The lesson is that when the “sample
size” is small, we are more likely to see extreme events.

Here is another common type of situation. What is the length of the first
Chinese Emperor Qin Shi Huangdi’s nose? You don’t know? Well, you can
make a guess. How likely is it that your guess is correct? Not very likely.
Suppose that you decide to ask everybody you know to also guess, and then
average all the answers together in an attempt to get a better guess. How
likely is it that this averaged-guess is perfectly correct? No more likely. If you
haven’t a clue about the nose, and nobody else does either, than averaging
ignorance is no better than single ignorance. The lesson is that just because a
large group of people agree on an opinion, it is not necessarily more probable
that that opinion, or average of opinions, is correct. Uninformed opinion of
a large group of people is not necessarily more likely to be correct than the
opinion of the guy on the corner. Think about this the next time you hear
the results of a poll or survey.

You already posses other probabilistic intuition. For example, suppose,
given some evidence E, the probability of A is 0.0000001 (A is something

1Uncle Ted Nugent, that is.
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that might be given many opportunities to happen, e.g. winning the lottery).
How often will A happen? Right, not very often. But if you give A a lot
of chances to occur, will A eventually happen? It’s very likely to. See the
homework for a continuation of this.

Combining probability questions is also common. Every player in petanque
gets to throw three boules. What are the chances that I get all three within
5 cm? This is a compound problem, so let’s break it apart. How do we find
out how likely it is to be within 5 cm of the cochonette? Well, that means
the boule can be 5 cm in front of the cochonette, right near it, or up to 5
cm beyond it. The chance of this happening is Pr(−5cm < x < 5cm|m =
0cm, s = 10cm,EN ). We learned how to calculate the probability of being
in an interval last chapter:

pnorm(5,0,10)-pnorm(-5,0,10).

This equals about 0.38, which is the chance that one boule lands within, or
+/- 5 cm, from the cochonette. What is the chance that all of them land
that close? Well, that means the first one does and the second one and the
third. What probability rule do we use now? The second, which tells us to
multiple the probabilities together, which is 0.383 ≈ 0.14. The important
thing to recall, when confronted with problems of this sort: do not panic.
Try to break apart the complex problem into bite-size pieces.

4. Regression to the mean

There is a thing called the Sports Illustrated curse. It is supposed to
befall an athlete immediately after he appears on the cover of the magazine.
One minute the jock is riding high, adulation appears from all corners, he
gets his mug on the front page of SI, and then—poof!—next week he’s down
in the dumps. Now, before I tell you why there is no such thing as this curse,
can you think of how probability can explain it?

No athlete performs the same week to week. This is obvious. The chance
that he performs very poorly, or less than average, to middle of the road,
to above average, to exceptional well can all be quantified by a probability
distribution. No athlete will always perform at his worst nor at his best. But
when he does perform at his best, and he does so for, say, a week or two in
a row, he will come to the notice of the writers at SI. Those writers have to
put somebody on the cover, and so they choose our man.

Since performing at his absolute best, and for a week or two in a row, is
improbable, our man will very likely perform merely above average or worse
in the weeks after he gets his picture on the cover. The curse will have struck
again!

Regression to the mean is also the name for the empirical observation
that, for example, very tall men tend to have shorter children. Key word is
“tend”. I am tall and had one average-height son and one that was taller
than me. If genetics dictated that men’s children would be identical to him
(in some characteristic, or share some gene), there would be no regression
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to the mean. Since genetics tells us that it is only probable but not certain
that a man’s child would be identical to him (in the sense of sharing a gene),
regression to the mean happens.

5. Forecasting

A central tenet of this book is that all of statistics is about using old
data and evidence to make probability statements about data not yet seen.
Example: an efficacy drug trial. After the trial is over we want to predict
how different patients will fare using the drug. Usually, but not always,
these data are observables that will be measured in the future, so, if you
like, we can call this process forecasting. That term is typically reserved for
the statistics of observables that occur at regular intervals through time, an
area also called time series analysis. However, the distinction is unfortunate
because in making it we tend to lose sight of the real purpose of statistics:
which is making predictions.

There are, of course, many technical methods to do this predicting—
we’ll be learning some of them in two Chapters–but oftentimes we make
informal guesses about unseen data and it’s good to understand how these
guesses fit in with probability statements. Not all the informal predictions
we make are equally good. Around the 4th of July, here in the States, there
is a tendency for weather forecasts to show a probability of precipitation
that is lower than it should be. By that I mean, it rains more than the
forecasters guess it would.

The same thing inverted happens around December 25th (the Federally
Recognized Holiday That Shall Not Be Named): the forecasts tend to give
too high a probability of precipitation. It snows less than the forecasters
guess it would.

This phenomena is well recognized in meteorology where it has long
gone by the name of —it wishcasting. This describes the tendency of the
forecaster to tilt his guess toward the outcome which he would like to see,
or toward the outcome he knows his viewers would like to see.

Good weather forecasters, obviously, are aware of this tendency and do
their best to lessen its influence. But even the best of them tend to get
excited when a big storm is on its way, these being matters of great and ev-
ident importance, and sometimes they issue forecasts which exaggerate the
chance of severe weather. Still, the influence of wishcasting is small among
most professionals, mostly because of the routine evaluation of forecast per-
formance and criticism of peers. People like to pick on weather forecasters,
but among any professional group, I have not found any to be better or more
reliable than the National Weather Service.

Before we go further, let me answer an objection which might have oc-
curred to you. Why not exaggerate the probability of a storm causing dam-
age since “its better to be safe than sorry”? To do this takes the decision out
of the hands of person who will experience the storm and puts it into the



5. FORECASTING 61

hands of the forecaster. And that is the wrong thing to do: the forecaster
does not know better than his audience what decisions are best. Every per-
son in the path of a storm knows what losses he will face if a storm hits,
and how much it will cost him to protect against one. Sometimes the cost of
protecting against a storm are too much, and it will be better for a person
to do nothing if the chance of storm isn’t too high. If people are routinely
given exaggerated forecasts, then they will pay the cost of protecting more
than they should. You cannot use the forecast as a tool to warn people of
dangers which are unimportant to them. It will make them less likely to
believe forecasters when real dangers arise. The lesson of Chicken Little is
pertinent.

While the Weather Service forecasters do a great job, this is not so among
all professions. Reporters and politicians, for example, routinely wildly over-
state potential dangers, even for mundane events. Well, reporters and politi-
cians shading the truth, embroidering facts, neglecting pertinent informa-
tion, and at times outright lying is by now of no surprise. People have learned
to “divide by 10” any statement issued from a newsroom, so journalists cause
less harm than they would if they were taken at face value.

Wishcasting is by no means restricted to weather predictions. Forecast-
ing who will win an election, for example, is fraught with emotion. It is
difficult to remove the prejudices you have for one candidate or the other
and give a good guess. If you love candidate X, you are likely to increase
your guess of the chance of him winning. If you fear candidate Ys promised
reforms, that might increase your guess of the chance of him winning if you
are naturally pessimistic. To carefully sift through all the evidence and arrive
at an unemotional prediction is extremely difficult.

Gamblers often wishcast. “Red hasnt come up if seven spins, so its more
likely to now.” Part of this reasoning is due to misunderstanding or not
knowing the rules of probability that govern simple games, but part is also
due to the desire for the outcome. Wishcasting is also prevalent in envi-
ronmental circles. So much so, that an “activist” who doesnt embellish her
predictions is a oddity. Brokers, financial planners, stock pickers, and similar
professionals are no less prone to wishcasting, as any study of the economy
will show.

Wishcasting is somewhat different than the experimenter effect, although
there is some overlap. The experimenter effect is when a scientist (or group
of them), consciously or not, manipulates an experiment to unfairly demon-
strate the effect they were looking for. A common example is a drug trial.
One group of patients is given a new drug, the other an old one or a placebo.
If the patients are evaluated by a physician who knows which patient got
which drug, it is likely the effects of the new drug will be exaggerated. This
phenomena is so well known that the government mandates blinding of med-
ical trials. This is where the physician who evaluates the patients has no idea
which treatment the patient has received.
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Michael Crichton, physician and author, in testimony to congress, gave
an example of this:

It’s 1991, I am flying home from Germany, sitting next
to a man who is almost in tears, he is so upset. He’s a
physician involved in an FDA study of a new drug. It’s a
double-blind study involving four separate teamsone plans
the study, another administers the drug to patients, a third
assesses the effect on patients, and a fourth analyzes re-
sults. The teams do not know each other, and are pro-
hibited from personal contact of any sort, on peril of con-
taminating the results. This man had been sitting in the
Frankfurt airport, innocently chatting with another man,
when they discovered to their mutual horror they are on
two different teams studying the same drug. They were
required to report their encounter to the FDA. And my
companion was now waiting to see if the FDA would de-
clare their multi-year, multi-million dollar study invalid
because of this chance contact.

His point in this testimony was to show that researchers in other fields,
such as global warming, are nowhere near as careful as their colleagues in
medicine:

[T]he protocols of climate science appear considerably more
relaxed. In climate science, it’s permissible for raw data to
be “touched,” or modified, by many hands. Gaps in tem-
perature and proxy records are filled in. Suspect values
are deleted because a scientist deems them erroneous. A
researcher may elect to use parts of existing records, ig-
noring other parts. But the fact that the data has been
modified in so many ways inevitably raises the question of
whether the results of a given study are wholly or partially
caused by the modifications themselves...

...[A]ny study where a single team plans the research,
carries it out, supervises the analysis, and writes their own
final report, carries a very high risk of undetected bias.
That risk, for example, would automatically preclude the
validity of the results of a similarly structured study that
tested the efficacy of a drug.

Wishcasting meets the experimenter effect when the results from a non-
blinded experiment are exaggerated to “raise awareness” of the potential
horrors that await us if we do not heed the experimenters’ advice. Some-
times this exaggeration is done on purpose, as with the weather forecaster
who feels his viewers would be “better safe than sorry”, and sometimes the
overstatement is unconscious because the forecaster has not recognized his
limitations. Scientists are particularly prone to this when announcing their
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results to the public. They often feel they are special and able to avoid the
frailties that plague the rest of us, but of course, they cannot; they are still
human.

It is nearly impossible to disentangle experimenter effect from wishcast-
ing in any situation, nor can we easily identify the constituent facts and their
relevance used by a forecaster in producing his forecast. To do so essentially
means producing a rival forecast and is a laborious process. What we can do
(this is my line of country) is to check how good the actual performance of
a forecast is. If the forecast routinely fails, we can say something has gone
wrong. Just what requires more work: was it bad data, mistaken theory,
wishcasting, or something else? If the forecast routinely fails, we are ratio-
nal to suspect it will fail in the future, and that the theories said to underly
the forecast might be false. If the forecast fails, we are also right to question
the motives of the forecaster, because it is these motives that influence the
presence or amount of wishcasting.

These cautions do not just apply to weather or climate forecasts, but
in all areas where routine predictions are made. Could you be making more
money in your stock portfolio or office football pool, for example? Generally,
wishcasting takes places when forecasting complex systems, like the weather,
climate, or any area involving human behavior. Its much less likely in simple
situations, like how much this electron will move under a certain applied
force, or what will happen when these two chemicals are mixed. But well
save complexity for another book.

6. Homework

(1) We can easily figure out how much more Pepsi sold is twice as much as
Coke at Times Square. This, from your high school algebra days, is found
by solving the equations: Pepsi > 2×Coke, and Pepsi + Coke = 5000.
Thus, Coke = 5000 - Pepsi, so (substituting this into the first equation),
Pepsi > 2× (5000 - Pepsi). Finally, 3×Pepsi > 10000, or Pepsi > 3334.
Use this technique to solve the amount of Pepsi at Gaylord. Then use R

(the pbinom equation) to formally solve the probability of selling twice as
much Pepsi at each location.

(2) If the probability of A (given some evidence) happening is 0.0000001,
about how many chances for A to happen have there to be so we can be
50% or more certain A will occur? An example might be making a basket
by tossing the basketball, behind your back, the length of the court. hint:
think binomial.

(3) What is the probability that I get at least one boule out of three within
5 cm of the cochonette? What is the probability that my teammate also
gets at least one boule as close?

(4) A cop is about to shoot a bad guy. The chance that the cop hits the bad
guy is about 30%. How many times should the cop fire so that he is at
least 99.9% sure of hitting the bad guy (and thus making it more certain
that he himself is not shot)? hint: think binomial; what is n?
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(5) Two groups of people exist. Group A is normal. The people in group B
were exposed to deadly, hulk-inducing gamma radiation. This radiation
affected their systolic blood pressure, the uncertainty of which is mea-
sured with a normal distribution with central parameter of 125.4 mmHg
(millimeters of mercury) and some spread parameter. The central param-
eter for group A is 120 mmHg, about 5% lower than in B. It has the same
spread parameter as B. Patients only come into blood-pressure physician
Dr. Banner’s office if they have blood pressures over 160 mmHg. About
what percentage of Dr. Banner’s patients will be from group B: 5%, 50%,
55%, or 95%?

(6) Uncle Ted’s also sells the Super Freedom 4x4 Ground Round Pounder,
4 pounds of quality chuck, topped by a slab of premium yellow cheese
(the kind with the colorful things in it!), a sliver of onion, and a cup
of sugar-free ketchup, all crammed between a loaf of whiter-than-white
bread. The probability of any customer buying this cardiologist’s delight
is 0.002. Can you tell which location, Times Square or Gaylord, is more
likely to sell, on any given day, a Super Freedom burger?

(7) Two government-funded researchers, Drs. C and D, set out to discover
how well Americans know their celebrities, for nothing is more important
than celebrities. Dr. C asked 1 random person a day whether they recog-
nized the haircut of a pop star from a set of photographs. Dr. D asked 3
people a day the same thing. Both found that Americans knew about 1/2
the haircuts shown to them. Dr. C counted each research day a success if
the person he interviewed correctly identified the celebrity. Dr. D counted
the day a success if all his interviewees correctly identified the celebrities.
Can you say which researcher had more successful days?

(8) Dr W, a prominent psychiatrist, sees patients only on Wednesdays and
Thursdays (the other days he sets aside to count his money). He sees
about 30 on Wednesdays and about 5 on Thursdays. The chance that a
patient has the Heebie-Jeebies is 10%. On which day will Dr. W more
likely see a greater proportion of patients for that day with this dread
disease?

(9) Dr. W’s main interest is in the Screaming Willies. He developed a drug
which he gave to his patients to improve their scores on a mental exam.
He quantified the uncertainty in the improvements with a normal dis-
tribution. He also discovered that patients given a placebo instead of a
drug also tended to improve their scores. He quantified his uncertainty in
placebo-patient improvements with a normal distribution, too. Both nor-
mal distributions, for the drug- and the placebo-patients, had the same
central parameter, but the placebo group had a spread parameter 3 times
that of the drug group’s. Dr. W wanted to hold a reunion party only for
those patients who improved—regardless of their group; he couldn’t bear
to face those who got worse. He could only afford to have a party with
30 people, because the disco hall he had rented only had a small number
of rental roller skates. So he sent out invitations to the top 30 patients
that got better. About how many of the people that Dr. W invites will
be from the drug (not the placebo) group: 1, 15, 20, or 30?
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(10) What will be the approximate ratio of drug group to placebo group pa-
tients, just for those patients who did not improve nor got worse? (This
is the number of drug group patients who did not improve nor got worse
divided by the placebo group patients who did not improve nor got worse).

(11) Dr. W could not face his failures, but a lawyer hired by those whose scores
got worse could (the lawyer was actually hired by other family members,
because those who got worse were no longer smart enough to think of
hiring a lawyer). The lawyer obviously wants to score big—I mean, wants
justice to prevail—and so selects as his customers—clients—those patients
who really got worse. About what proportion of the lawyer’s clients will
be from the drug group?

(12) A new casino has opened in the Greek Quarter of Detroit, called the
Zaplutus. Gamblers suspect the high-stakes roulette table is rigged. This
roulette table only has black and red slots, an even number of each, and
to play it gamblers must bet at least $10,000 a roll. Plus, no spectators
are allowed at the table: you must bet to watch the game. Two gamblers
decide to bet. Gambler A bet black 5 times. The wheel came up red 4
times and black 1 time. Gambler B, who is richer, bet 20 times, all on
black too. His wheel came up 13 times red and 7 times black. Can you tell
which gambler should be more suspicious that the table is rigged toward
coming up red more often?

(13) Think about an upcoming or recent election. Who do you want to win
and who do you think will win? If it’s possible (the right season and
circumstances), carry out a survey first asking people who they want to
win and then who they think will win. You will find the results surprising,
particularly if the election is a major or contentious one.





CHAPTER 7

Reality

1. Kinds of data

Somewhere, sometime, somehow, somebody is going to ask you to cre-
ate some kind of data set (that time is sooner than you think; see the
homework). Here is an example of such a set, written as you might see
it in a spreadsheet (a good, free open-source spreadsheet is Open Office,
www.openoffice.org):

Q1 . . . Sex Income Nodules Ridiculous

rust . . . M 10 7 Y
taupe . . . F 3 N

...
...

...
...

...
...

ochre . . . F 12 2 Y

This data is part of a survey asking people their favorite colors (Q1),
while recording their sex, annual income, the number of sub-occipital nod-
ules on their brain, and whether or not the interviewee thought the subject
ridiculous or not. There is a lot we can learn from this simple fragment.

The first is always use full, readable, English names for the variables.
What about Q1, which was indeed the first question on the survey. Why
not just call it “Q1”? “Q1” is a lot easier to type than “favorite color”.
Believe me, two weeks after you store this data, you will not, no matter
how much you swear you will, remember that Q1 was favorite color. Neither
will anybody else. And nobody will be able to guess that Q1 means favorite
color.

Can you suggest a better name? How about “favcol”, which has fewer
letters than “favorite color”, and therefore easier to type? What are you,
lazy? You can’t type a few extra letters to save yourself a lot of grief later
on?

How about just “favorite color.” Well, not so good either, because why?
Because of that space between “favorite” and “color”; most software cannot
handle spaces in names. Alternatives are to put underscore or period be-
tween words “favorite color”, or “favoriteċolor”. Some people like to cram
the words together camel style, like “favoriteColor” (the occasional bump of
capital letters is supposed to look like a camel: I didn’t name it). Whichever

67
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style you choose, be consistent! In any case, nobody will have any trouble
understanding that “favoriteColor” means “favorite color”.

Notice, too, that the colors entered under “Q1” use the full English name
for the color. Spaces are OK in the actual data, just not in variable names:
for example, “burnt orange” is fine. Do not do what many sad people do and
use a code for the colors. For example, 1=taupe, 2=envy green, 3=fuschia,
etc. What are you trying to do with a code anyway? Hide your work from
Nazi spies? Never use codes.

That goes for variables like “Sex”, too. I cannot tell you how many times
I have opened up a data set where I have seen Sex coded as “1” and “2”,
or “0” and “1”. How can anybody remember which number was which sex?
They cannot. And there is no reason to. With data like this, abbreviation
is harmless. Nobody, except for the politically correct, will confuse the fact
that “M” means male and “F” female. If you are worried about it, then type
out the whole thing.

Similarly for “Ridiculous”, where I have used the abbreviation “Y” for
yes and “N” for no. Sometimes a “0” and “1” for “N” and “Y” are acceptable.
For example, in the data set we’ll use in a moment, “Vomiting” is coded that
way. And, after all, 0/1 is the binary no/yes of computer language, so this
is OK. But if there is the least chance of ambiguity for a data value, type
the whole answer out. Do not be lazy, you will be saving yourself time later.

It should be obvious, but store numbers as numbers. Height, weight,
income, age, etc., etc. Do not use any symbols with the numbers. Store a
weight as “213” and not “213 lbs”. If you are worried you will forget that
weight is in pounds, name the variable Weight.LBS or something similar.
Never put percentage signs (%s)next to percentages. Never use dollar signs
next to money. Leave numeric data as numbers!

What if one of your interviewees refused to answer a question? This will
often happen for questions like “Income”. How should you code that? Leave
his answer blank! For God’s sake, whatever you do, do not think you are
being clever and put in some mystery code that, to you, means “missing.” I
have seen countless times where somebody thought that putting in a “99”
or a “999” for a missing income was a good idea. The computer does not
know that 999 means “missing”; it thinks it is just what it looks like—the
number nine-hundred and ninety-nine. So when you compute an average
income, that 999 becomes part of the average. Also don’t use a period, the
full stop. That’s a holdover from an ancient piece of software (that some
people are still forced to use). Incidentally, we’ll talk about people lying on
surveys in Chapter 14.

There are times when an answer is purposely missing, and a blank should
not be used. For example, if “Income” is less than 20000, then the interviewee
gets an extra question that people who make more than 20000 do not get.
Usually, this kind of rule can be handled trivially in the analysis, but if
you want to show that somebody should not have answered and not that
they did not answer, then use a code such as “PM” for “purposely missing”.
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Even better would be to write “purposely missing”, so that somebody who
is looking at your data three months down the road doesn’t have to expend
a great deal of energy on interpreting what “purposely missing” means.

Try to use a real database to store your data, and keep away from spread-
sheets if you can. A real database can be coded so that all possible responses
for a variable like “Race” are pre-coded, eliminating the chance of typos,
which are certain to occur in spreadsheets. You will probably need help
building a real database, but you will not be sorry if can find it.

Here’s something you don’t often get from those other textbooks, but
which is a great truth. You will spend from 70 to 80% of your time, in any
statistical analysis just getting the data into the form readable for you and
your software. This may sound like the kind of thing you often hear from
teachers, while you think to yourself, “Ho, ho, ho. He has to tell us things
like that just to give us something to worry about. But it’s a ridiculous
exaggeration. I’ll either (a) spend 10-15% of my time, or (b) have somebody
do it for me.” I am here to tell you that the answers to these are (a) there
is no known way in the universe for this to be true, and (b) Ha ha ha!

2. Databases

The absolute best thing to do is to store you data in a database. I often
use the free and open source MySQL (.com, of course). Knowing how to
design, set up, and use such a database is beyond what most people want to
do on their own. So most, at least for simple studies, opt for spreadsheets.
These can be fine, though they are prone to error, usually typos. For in-
stance, the codings “Y” and “Y ” might look the same to you, but they
are different inside a computer: one has a space, one doesn’t. The computer
thinks these are as different as “Q” and “W”. This kind of typo is extraor-
dinarily common because you cannot see blank spaces easily on a computer
screen. To see if you have suffered from it, after you get your data into R

type levels(my variable name) and each of the levels, like “Y” and “Y ”
will be displayed. If you see something like this, you’ll have to go back to
your spreadsheet and locate the offending entries and correct them.

A lot of overhead is built into spreadsheets. Most of it has to do with
prettifying the rows and columns—bold headings, colored backgrounds, and
so on. Absolutely none of this does anything for the statistical analysis, so
we have to simplify the spreadsheet a bit.

The most common way to do this is to save the spreadsheet as a CSV
file. CSV stands for Comma Separated Values. It means exactly what it
says. The values from the spreadsheet are saved to an ordinary text file, and
each column is separated by a comma. An example from one row from the
dataset we’ll be using is

0,0,0,0,39,"black","male","Y",17.1,80,102.4,0

Note the clever insertion of commas between each value.
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What this means is that you cannot actually use commas in your data.
For example, you cannot store an income value as “10,000”; instead, you
should use “10000”. Also note that there is no dollar sign.

Now, in some countries, where the tendrils of modern society have not
yet reached, people unfortunately routinely use commas in place of decimal
points. Thus, “3.42” written here is “3,42” written there. You obviously
cannot save the later in a CSV file because the computer will think that
comma in “3,42” is one of the commas that separates the values, which it
does not. The way to overcome this without having to change the data is to
change the delimiter to something other than a comma; perhaps a semicolon
or a pound sign; any kind of symbol which you know won’t be in the regular
data. For example, if you used an @ symbol, your CSV file would look like

0@0@0@0@39@"black"@"male"@"Y"@17.1@80@102.4@0

The only trick will be figuring out how to do this. In Open Office, it’s
particularly easy: after opening up the spreadsheet and selecting “Save As”,
select the box ”Edit Filter settings” and choose your own symbol instead
of the default comma. A common mistake is to type an entry into, say, an
Opinion variable, where a person’s exact words are the answer and that
answer contains a comma. Guard against using a comma in these words else
the computer will think you have extra variables: the computer thinks there
is a variable between each comma.

3. Summaries

It’s finally time to play with real data. This is, in my experience, another
panic point. But it need not be. Just take your time and follow each step.
It is quite easy.

The first trick is to download the data onto your computer. Go to the
book website and download the file appendicitis.csv and save it some-
where on your hard disk in a place where you can remember. The place
where it is is called the path. That is, your hard drive has a sort of hier-
archy, a map where the files are stored. In you are on a Windows machine,
this is usually the C:/ drive (yes, the slash is backwards on purpose, be-
cause R thinks like a Linux computer, or Apple, which has the slashes the
other way). Create your own directory, say, mydata (do not put a space in
the name of the folder), and put the appendicitis file there. So the path to
the file is C:/mydata/appendicitis.csv. Easy, right? If you are on a Linux
or Mac, it’s the same idea. The path on a Mac is usually something like
/Users/YOURNAME/mydata/appendicitis.csv. On a Linux box it might be
/home/YOURNAME/mydata/

appendicitis.csv. Simple!
Open R. Then type this exact command:

x = read.csv(url("http://wmbriggs.com/book/appendicitis.csv"))
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There is a lot going on here, so let’s go through it step by step. Ignore the x

= bit for a moment and concentrate on the part that reads read.csv(...).
This built-in R function reads a CSV file. Well, what else would you have
expected from its name? Inside that function is another one called url(),
whose argument is the same thing you type into any web browser. The thing
you type is called the URL, the Uniform Resource Locater, or web address.
What we are doing is telling R to read a CSV file directly off the web. Pretty
neat!

If you had saved the file directly to your hard drive, you would have
loaded it like this

x = read.csv("C:/mydata/appendicitis.csv")

where you have to substitute the correct path, but otherwise is just as easy.
The last thing to know is that when the CSV file is read in it is stored

in R’s memory in the object I called x. R calls these objects data frames.
Why didn’t they call them data sets? I have no idea. How did I know to
use an x, why did I choose that name to store my data? No reason at all
except habit. You can call the dataset anything you want. Call it mydata if
you want. It just doesn’t matter.

Now type just x and hit enter. You’ll see all the data scroll by. Too much
to look at, so let’s summarize it:

summary(x)

This is data taken on patients admitted to an emergency room with right
lower quadrant pain (in the area the appendix is located) in order to find
a model to better predict appendicitis (Birkhahn et al., 2006). Each of the
variables was thought to have some bearing on this question. We’ll talk more
about this data later. Right now, we’re just playing around. When we run
the command we get the summary statistics for each variable in x. What
it shows is the mean, which is just the arithmetic average of the data, the
median, which is the point at which 50% of the data values are larger and
50% smaller, the 1st Qu., which is the first quartile and is the point at
which 25% of the data values are smaller, the 3rd Qu. which is the third
quartile and is the point at which 75% of the data values are smaller (and
25% are larger, right?). Also given in the Min. which is the minimum value
and Max which is the maximum. Last is NA’s, which are the number, if
any, of missing values. These kinds of statistics only show for data coded as
numbers, i.e. numerical data. For data that is textual, also called categorical
or factorial data, the first few levels of categories are shown with a count of
the number of rows (observations) that are in that category.

You will notice that variables like Pregnancy are not categorical, but
are numerical, which is why we see the statistics and not a category count.
Pregnancy is a 0/1 variable and is technically categorical; however, like I
said above, it is obvious that “0” means “not pregnant”, so there is no
ambiguity. The advantage to storing data in this way is that the numerical
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mean is then the proportion of people having Pregnancy =1 (think about
this!).

Let’s just look at the variable Age for now. It turns out we can ap-
ply the summary function on individual variables, and not just on data
frames. Inside the computer, the variable age is different than Age (why?).
So try summary(Age). What happens? You get the error message Error in

summary(Age) : object "Age" not found. But it’s certainly there!
You can read lots of different datasets into R at the same time, which

is very convenient. I work on a lot of medical datasets and every one of
them has the variable Age. How does R know which Age belongs to which
dataset? By only recognizing one dataset at a time, through the mechanism
of attaching the dataset directly to memory, to R’s internal search path. To
attach a dataset, type

attach(x)

Yes, this is painful to remember, but necessary to keep different datasets
separate. Anyway, try summary(Age) again (by using the up arrow on your
keyboard to recall previously typed commands) and you’ll see it works.

Incidentally, summary is one of those functions that you can always try
on anything in R. You can’t break anything, so there is no harm in giving it
a go.

4. Plots

The number one, unalterable rule that you must obey when beginning
work with a new dataset is always look at the data first! Too many
people forget this rule to their ultimate embarrassment.

The summary() function is easy and gives you information on the dis-
tribution of your data in text. But it’s usually easier to see what’s going
on with pictures. The visual equivalents of summary are boxplot, hist, and
table. Let’s do a boxplot first—it’s easy, boxplot(Age).

The y-axis are the values of Age. The center line on the boxplot is the
median, the outer edges of the box are the first and third quartile, and the
far ends of the lines are the 5% and 95% quantiles, defined in just the same
way as the other quartiles. Boxplots will often also stick dots beyond the far
ends for numbers that exceed that 99% quantile and numbers that are less
than the 1% quantile.

Next up is hist(Age), that tries to do exactly the same thing as boxplot,
which is to give you a visual summary of the range and likelihood of various
data values.

You can’t do a boxplot on data like Race, because that variable is cate-
gorical. Instead, do a table by table(Race) to get a count of each category.
This is OK, but just gives the counts when frequently you want the frequen-
cies. To get that, you have to make a table of the table (yes, this is a pain):
prop.table(table(Race)).
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plot is another one of those commands, like summary, that you can
always try on anything. It never hurts and you can’t break anything.

I originally included these plots in the book so you could see them, but I
decided against doing this to guard against your laziness in the homework.
Do these commands yourself!

5. Extra: Advanced topics

Temperature is one of the variables. You can try the summary command
on it and it works just fine. Sometimes you only want the mean and don’t
need all the other business, so you can use the function mean(Temperature).
Try it and you get [1] NA. What gives? Do a summary(Temperature) and
you’ll see that there are 7 missing values. The function mean is too stupid
to give you a mean in the presence of missing values. In a way, this is a
good thing, because it forces you to recall that you have an incomplete
dataset, and that should give you pause. Why are the values missing?
It could be important. You can get around the missing values by typing
mean(Temperature, na.rm=T), which says take the mean, and remove (rm)
the missing (na) values. The =T means TRUE ( you could also type the whole
word out as TRUE; use capitals). The mean will then be computed. R is won-
derful, but sometimes the way it handles missing values is a pain in the
ass.

A back-of-the envelope drawing that you can make by hand is called a
stem-and-leaf plot: it does not require you to first sort your data, but you
do have to discover the minimum and maximum values. In R it is stem(x).

Histograms and boxplots are very old, were wonderful in their day, and
in some cases (discrete data) are just the thing, but we can do better with
numbers that more are approximated as continuous (see Chapter 4), like
Age. For those, use a density estimate, which is, in a sense, an automated
superior histogram. To do this in R type plot(density(Age)).

You can assign the output of any function to a new variable, created by
you. So, if you want to store the table for Race, type fit = table(Race),
where I chose the name fit for no good reason. All the table results are now
in fit. To see it, just type fit. This makes getting proportions easier be-
cause you can now prop.table(fit). You could also plot(table(Sex)) or
plot(prop.table(table(Sex))) or any categorical variable; try plot(fit).

Also try plot(x) or pairs(x, panel=panel.smooth) and see what
happens.

6. Homework

(1) If you were going to collect a person’s college status (i.e. freshman, sopho-
more, etc.), what is the best coding? hint: there are more than just the
four standard levels of status.

(2) Go through this Chapter and do every single one of the examples. Do not

be lazy about this. It only looks easy on paper if you’ve never done it
before.
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(3) Type this into R:
source(url("http://wmbriggs.com/book/Rcode.R"))

That will load the file Rcode.R from this book’s website, and run it inside
R. That file contains a number of functions that we will use in later chap-
ters. Running this file produces no output, so don’t look for any. It merely
loads these functions into R’s memory so that they can be accessed. Now
download the file (by pasting the URL http://wmbriggs.com/book/Rcode.R

into any web browser), save it in the same place your stored the data. Then
type something like
source("C:/mydata/Rcode.R")

(if that is where you stored your data). Then you can use any word pro-
cessing software to open Rcode.R and view it. Do not make any changes
to the file unless you are comfortable programming R. I will never require
you to look at any of these files.



CHAPTER 8

Estimating

1. Background

Let’s go back to the petanque example, where we wanted to quantify
our uncertainty in the distance x the boule landed from the cochonette.
We approximated this uncertainty using a normal distribution with param-
eters m = 0 cm and s = 10 cm. With these parameters in hand, we could
easily quantify uncertainty in questions like X = “The boule will land at
least 17 cm away” with the formula Pr(X|m = 0 cm, s = 10 cm,EN ) =
Pr(x > 17 cm|m = 0 cm, s = 10 cm,EN ). R even gave us the number with
1-pnorm(17,0,10) (about 4.5%). But where did the values of m = 0 cm
and s = 10 cm come from?

I made them up.
It was easy to compute the probability of statements like X when we

knew the probability distribution quantifying its uncertainty and the value of
that distribution’s parameters. In the petanque example, this meant knowing
that EN was true and also knowing the values of m and s. Here, knowing
means just what it says: knowing for certain. But most of the time we do not
know EN is true, nor do we know the values of m and s. In this Chapter,
we will assume we do in fact know EN is true. We won’t question that
assumption until a few Chapters down the road. But, even given EN is true,
we still have to discern the values of its parameters somehow.

So how do we learn what these values are? There are some situations
where are able to deduce either some or all of the parameter’s values, but
these situations are shockingly few in number. Nearly all the time, we are
forced to guess. Now, if we do guess—and there is nothing wrong with guess-
ing when you do not know—it should be clear that we will not be certain
that the values we guessed are the correct ones. That is to say, we will be
uncertain, and when we are uncertain what do we do? We quantify our
uncertainty using probability.

At least, that is what we do nowadays. But then-a-days, people did not
quantify their uncertainty in the guesses they made. They just made the
guesses, said some odd things, and then stopped. We will not stop. We will
quantify our uncertainty in the parameters and then go back to what is
of main interest, questions like what is the probability that X is true? X is
called an observable, in the sense that it is a proposition about an observable
number x, in this case an actual, measurable distance. We do not care about

75
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the parameter values per se. We need to make a guess at them, yes, otherwise
we could not get the probability of X. But the fact that a parameter has a
particular value is usually not of great interest.

It isn’t of tremendous interest nowadays, but again, then-a-days, it was
the only interest. Like I said, people developed a method to guess the pa-
rameter values, made the guess, then stopped. This has led people to be far
too certain of themselves, because it’s easy to get confused about the values
of the parameters and the values of the observables. And when I tell you
that then-a-days was only as far away as yesterday, you might start to be
concerned.

Nearly all of classical statistics, and most of Bayesian statistics is con-
cerned with parameters. The advantage the latter method has over the for-
mer, is that Bayesian statistics acknowledges the uncertainty in the pa-
rameters guesses and quantifies that uncertainty using probability. Classical
statistics—still the dominate method in use by non-statisticians1—makes
some bizarre statements in order to avoid directly mentioning uncertainty.
Since classical statistics is ubiquitous, you will have to learn these methods
so you can understand the claims people (attempt to) make.

So we start with making guesses about parameters in both the old and
new ways. After we finish with that, we will return to reality and talk about
observables.

2. Parameters and Observables

Here is the situation: you have never heard of petanque before and do
not know a boule from a bowl from a hole in the ground. You know that
you have to quantify x, which is some kind of distance. You are assuming
that EN is true, and so you know you have to specify m and s before you
can make a guess about any value of x.

Before we get too far, let’s set up the problem. When we know the values
of the parameters, like we have so far, we write them in Latin letters, like m
and s for the Normal, or p for the binomial. We always write unknown and
unobservable parameters as Greek letters, usually µ and σ for the normal
and θ for the binomial. Here is the normal distribution (density function)
written with unknown parameters:

(19) x|µ, σ,EN ∼ N(µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

where µ is the central parameter, and σ2 is the spread parameter, and where
the equation is written as a function of the two unknowns, N(µ, σ). This
emphasizes that we have a different uncertainty in x for every possible value

1I mean those people who were not formally trained in the mathematical subjects of
probability and statistics. The vast numbers of people who compute statistics have not
had this training beyond, say, a class given in a Psychology department by a professor
who himself was not so trained, etc.
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of µ and σ (it makes no difference if we talk of σ or σ2, one is just the square
root of the other).

You may have wondered what was meant by that phrase “unobservable
parameters” last paragraph (if not, you should have wondered). Here is a
key fact that you must always remember: not you, not me, not anybody,
can ever measure the value of a parameter (of a probability distribution).
They simply cannot be seen. We cannot even see the parameters when we
know their values. Parameters do not exist in nature as physical, measurable
entities. If you like, you can think of them as guides for helping us understand
the uncertainty of observables. We can, for example, observe the distance the
boule lands from the cochonette. We cannot, however, observe the m even if
we know its value, and we cannot observe µ either. Observables, the reason
for creating the probability distributions in the first place, must always be
of primary interest for this reason.

So how do we learn about the parameters if we cannot observe them?
Usually, we have some past data, past values of x, that we can use to tell us
something about that distribution’s parameters. The information we gather
about the parameters then tell us something about data we have not yet
seen, which is usually future data. For example, suppose we have gathered
the results of hundreds, say 200, of past throws of boules. What can we
say about this past data? We can calculate the arithmetic mean of it, the
median, the various quantiles and so on. We can say this many throws were
greater than 20 cm, this many less. We can calculate any function of the
observed data we want (means and medians etc. are just functions of the
data), and we can make all these calculations never knowing, or even needing
to know, what the parameter values are. Let me be clear: we can make just
about any statement we want about the past observed data and we never
need to know the parameter values!2 What possible good are they if all we
wanted to know was about the past data?

There is only one reason to learn anything about the parameters. This
is to make statements about future data (or to make statements about data
that we have not yet seen or cannot see. Though that data may be old; we
just haven’t seen it yet; say archaeological data; all that matters is that the
data is unknown to you (and what does “unknown” mean?). That is it. Take
your time to understand this. We have, in hand, a collection of data xold,
and we know we can compute any function (mean etc.) we want of it, but
we know we will, at some time, see new data xnew (data we have not yet
seen or might not ever see), and we want to now say something about this
xnew. We want to quantify our uncertainty in xnew, and to do that we need
a probability distribution, and a probability distribution needs parameters.

The main point again: we use old data and other evidence to make
statements about data we have not yet seen.

2This is one of the most important sentences in the entire book.
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3. Classical guess

We first need to find some way to map our evidence E and the past values
of x into information about the parameters. There are lots of different ways
to guess at parameter values, some easy and some hard, and these all fall
into two broad classifications: yes, a classical and a modern.

We have past values of x and we want to know about future, or at least
other, unknown values of x. Our evidence is E, which at least means that
we know the probability distribution (Normal, say) of the observables. In
this book we will also assume that E also means that knowledge of each
individual observation is irrelevant to knowing what each other observation
with be, but we must understand that this assumption does not always hold;
it is just the dealing with violations of this assumption is complicated. We
have to find a way to guess, or estimate, these unknown and unobservable
parameters given E and the old data xold.

The classical way to do this is to pick an ad hoc function of the old data
and label it f(xold) = µ̂, where that “hat” indicates that the value of µ
is only a guess. Most classical estimates have the goal that the estimate is
“unbiased”, or Ex(µ− µ̂) = Ex(µ−f(xold)) = 0, meaning that the expected
distance between the actual value of µ and the guess µ̂ is 0. Sounds like a
nice thing to have, unbiasedness, and it surely isn’t a bad idea, but it turns
out to cause a lot of problems, most of which I cannot tell you about without
introducing a lot of math. However, this criterion is not compelling because
of that expected value business. Expected value with respect to what? Well,
with respect to an infinite number of future (not yet observed) data x...which
is just the data that we are trying to quantify the uncertainty of.

Anyway, in R, to estimate the parameters of a normal distribution clas-
sically is easy, and you already know how to do it! If x is our old, previously
observed data, x1, x2, ..., xn, then

µ̂ = mean(x) σ̂ = sd(x)

The mean you already know to calculate. It is often written x̄, and called
“x bar”. When you see a data value with a bar over it, you know it is a
mean. The observed variance of old data is

∑i=n
i=1 (xi− x̄)2, and the observed

standard deviation of old data is the square root of that. Look at the formula
and notice that the standard deviation is a measure of how far, on average,
the old data values are away from the observed mean. The square is taken,
(xi − x̄)2, so that data values that were lower than the observed mean are
treated the same as data values that were higher. (If you have missing data
in x, recall Chapter 7, where we had to modify the function like this mean(x,
na.rm=T; same for the sd function).

We’ll never calculate the observed standard deviation by hand. But it’s
pretty convenient to have the observed mean stand in for our guess of µ.
Unfortunately, because µ̂ = mean, a lot of people have taken to calling µ
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(without the hat) the mean, which it most assuredly is not. µ is an unob-
servable parameter, while the mean is just the weighted sum of a bunch of
data we have already observed. This is a subject that I’ll return to later.

Quick reminder quiz. Suppose that we do know the value of the parame-
ter exactly: what will be the value of the next observable? Right! You don’t
know!

4. Confidence intervals

OK, it might have been hard to understand all this so far, but it’s about
to get weird, so be steady. The value µ̂ we got before was precise; it is a
known, observed number (it is the mean). But do we really believe, given the
data and other evidence, that the exact, all-time, incorruptible, immutable
value of µ is, to as many decimal places as you like, equal to µ̂? You may have
guessed, by the subtle way I’ve asked that question, that the answer is “no.”
And you’d be right! Suppose µ̂ = 5.41. Maybe µ is 5.41, but it might also
be, say, 5.40, or 5.39, or other values close by, mightn’t it? This is a fancy
way to state that we are uncertain what the value of µ is. How do we express
this uncertainty? Use probability? No. It is forbidden to use probability to
quantify the uncertainty of parameter values in classical statistics.

Instead, classical statisticians use something called a confidence interval,
which is an interval on the order of µ̂±c(n), where c(n) is some number that
usually depends on the number n of your data points and on the old data
itself. Bigger c(n) lead to wider intervals; smaller c(n) lead to narrower ones.
So you might expect that when you say that “I think µ is 5.41 plus or minus
4” you have a better chance of being right then when you say “I think µ is
5.41 plus or minus 1”, because the former interval allows you greater scope
of covering the actual (unobservable) value of µ. And, classically, you’d be
dead wrong.

Which is why confidence intervals are one of the screwiest things to come
out of the classical tradition, in that they fail utterly to do what they set
out to do. But their use is so ubiquitous (not to say iniquitous) that I’m
afraid you are going to have to learn to interpret them. And they are one of
the most important things you must learn in this book! because you will see
confidence intervals everywhere, thus it is imperative you learn what they
are and what they are not.

Part of the problem is that you simply cannot learn what a confidence
interval is by reading most introductory statistics books. Take, for example,
the very typical book Statistics: Informed Decisions Using Data by Sullivan
(2007, pp. 448-449), often used in Stats 101 courses. He officially defines a
confidence interval for an unknown parameter as “an interval of numbers”
(p. 449), which is as pure a tautology as you’re ever likely to meet, and
being a tautology, it is therefore, of course, true, but of no help (it says
the confidence interval is an interval). But a page earlier, we find Sullivan
implying that smaller intervals give us less confidence in the value of the
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parameter than larger intervals. This implication is, as I said above, false,
and is no part of the actual, mathematical definition of a confidence interval.

Maybe something like this is more accurate:

[A] 95% level of confidence...implies that, if 100 different con-
fidence intervals are constructed...we will expect 95 of the
intervals to include the parameter and 5 to not include the
parameter [p. 449].

Actually, we can expect nothing like this. And though this definition is closer
to the truth, it is still false (to find out why, keep reading). Incidentally,
classical theory lets you calculate confidence intervals at any level you want,
but the only one you ever really see is the 95% interval, so that one is all I
will talk about.

Here’s the actual definition. Suppose you gather some data and con-
struct a confidence interval using the formula C1 = {µ̂ ± c(n)} (the actual
formula is not of much interest to us; the software will give us the inter-
val automatically). That is, C1 is the interval calculated using the data we
just collected. Now imagine (incidentally, this is all you can do) that you
re-collect your data in exactly the same way, where every physical thing is
exactly the same as it was when you collected it the first time. That is, the
state of the universe has to be identical to where it was when you first col-
lected your data. Except that it must be “randomly” different, or different
in ways that you know nothing about. Very well, you now have a second
data set equal in every way to the first, except that it is “randomly” differ-
ent, whatever that means. You then construct a new confidence interval C2

using the exact same formula on this second set of data (which is also the
same size, n). Now do it all again and construct C3, and again for C4, and
again and again an infinite number of times. When you are done, 95% of
those intervals will cover the actual value of µ. That—and nothing else—is
the true definition of the confidence interval.
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This is shown in the picture for the eight confidence intervals for some
imaginary scenario. The true value of µ is indicated by the dotted line.
Some of the intervals “cover”, i.e. contain, the true value of µ, and some
do not. More than that, we cannot say. Our confidence interval, the bottom
bold one, is the only confidence interval we’ll actually see; the others are
hypothesized entities that are conjured into existence if confidence intervals
are properly interpreted.

I only showed the first 8 (out of an infinite number of) confidence inter-
vals (that are said to exist for every problem you ever do). If you only repeat
your experiment a finite number of times, and therefore only have a finite
number of confidence intervals, say, 1,000,000, then it is false that we expect
any number of them will cover the true value of µ: stopping constructing
confidence intervals at any finite value invalidates the interpretation that
95% of intervals will cover the actual value of µ.

Yes, this is the actual definition, but saying it this way leaves a bad taste
in one’s mouth, especially because of that bit about “infinite” numbers of
repetitions. Statisticians, feeling uneasy about infinities, and their physical
impossibility, usually resort to the euphemism “long run” to describe the
number of repetitions needed. They know very well that, mathematically,
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long run equals infinite, but saying “in the long run” gives the comfort-
able impression that all you need is a lot, and not an infinite number, of
repetitions.

By now you are thinking, “OK, I get it. So what? What you’re saying
is just a quibble. Who cares about infinities or long runs, anyway. Give me
some information I can use! What do you do with your confidence interval,
the one you just constructed? What does it mean?”

Nothing. Not a thing. It certainly does not mean that you are 95% sure
that your interval contains the actual value of µ. That is, you cannot, under
any circumstances, say that “There is a 95% chance that the true value of
µ lies in the 95% confidence interval I have constructed.” That statement,
after all, is a direct probabilistic statement about the interval you have just
created. Recall our key rule: it is forbidden in classical statistics to make di-
rect probability statements about unobservable parameters. Memorize this.
Your confidence interval only has an interpretation as part of an infinite set
of other confidence intervals.

We have just hit upon the dirtiest open secret of classical statistics.
There is no interpretation of your confidence interval other than this: the
best you can say is that your interval either contains the actual value of µ
or it does not, a statement which is a tautology, and, again therefore, true,
but of no help (incidentally, Sullivan (2007) finally acknowledges this on p.
500). So what do you do with the interval you have just created? Why even
bother, since it has no direct relation to the problem at hand? It’s even
worse. Pick any two different numbers, say, 12 and 42. It is a true statement
to say that this interval either contains µ or it does not for any statistical
problem done by anybody with any data any time whatsoever (make sure
you understand that before reading further).

The guy that invented confidence intervals, Dzerzij (Jerzy) Neyman, a
statistician, knew about the interpretational problems of confidence inter-
vals, and was concerned. But he was even more concerned about something
called inductive arguments. An example due to Stove Stove (1986): All the
flames I have observed before have been hot (the premise); therefore, this
flame will be hot (the conclusion). Neyman, and many other influential 20th
century statisticians, rejected inductive arguments a basis for probability.
They felt arguments like these were “groundless” or that inductive argu-
ments were fallible because of the true statement that, for the flames ex-
ample, there was nothing in the universe guaranteeing that this flame will
be hot3. Inductive arguments are needed to make direct probabilistic state-
ments about things like confidence intervals. If you reject them, then you
cannot use probability. So Neyman, and those who followed him (which was
nearly everybody), tried to take refuge in arguments like this: “Well, you
cannot say that there is a 95% chance that the actual value of the parameter

3To which you can argue; Ok, if you doubt it, stick your hand into this flame (Briggs,
2006).
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is in your interval; but if statisticians everywhere were to use confidence in-
tervals, then in the long run, 95% of their intervals will contain their actual
values.” Thirty-two extra credit points to those who can show the obvious
flaw in this argument (see the homework).

The flaw in that argument was so obvious that it was evident to Neyman
himself. And so, with nowhere else to turn, Neyman recommended a dodge
and said this: “ The statistician...may be recommended...to state that the
value of the parameter µ is within (the just calculated interval)” merely by
an act of will (Neyman (1937), quoted in Franklin (2001a)).

What you would like to be able to say is that “I have 95% (or whatever)
confidence that this interval covers the true value of µ.” But you can never
do this in classical statistics.

In R, to get the confidence interval of a normal distribution classically
is a little more work than just getting the estimates, but it isn’t really that
hard. This is for the appendicitis data, the White.Blood.Count (don’t forget
to read the data in and attach it):

confint(glm(White.Blood.Count∼1))

The function confint calculates 95% confidence intervals. The inside func-
tion glm, with that funny argument ∼1, basically says, “The uncertainty in
the variable should be quantified by a normal distribution.” Just take my
word for it now; we’ll see this function later and this notation will become
clear then. Anyway, after you run the command you will see something like
this:

2.5 % 97.5 %

9.991874 10.818126

Ignore the word (Intercept), it is actually White.Blood.Count (this is
because this function works for any variable name you care to enter). The
2.5 % and 97.5 % are like the quantiles; subtract 2.5 from 97.5 and get the
length of the interval, which is 97.5%-2.5% = 95%.

We could use another R function and compute the confidence interval
for σ̂, but it is not of great interest because later, we’ll see how to do all
these things more or less automatically. Besides, we want to concentrate
on what these intervals mean. If you’ve already forgotten, then go back
and read this section from the beginning. One thing that is certain is that
confidence intervals say nothing about the observables, the data x. If they
say anything, they say something about the unobservable parameters. But
what? The interval we computed for white blood count was about [10, 11].
This is an interval about estimated central parameter µ̂ and not about the
mean. We know the mean (it is...? find it in R). The confidence interval is an
attempt to put a measure of precision on the guess µ̂. It says nothing about
the mean, and nothing about actual values of white blood count. Never
forget this.
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5. Bayesian way

The idea behind modern statistics is that you quantify any and all un-
certainty you have in anything using probability. We’ve already seen how
to quantify uncertainty using probability for observables; that is, for actual
data. That turns out to be done the same way classically and Bayesianly.
This is what we did the first few Chapters, was it not? We wrote down
some probability distribution, with known parameters, and made proba-
bility statements about observable data. Classical and Bayesian statistics
begin to diverge when we start to talk about unknown parameters and how
to make guesses about these parameters.

We made guesses classically by specifying some ad hoc function of the

data, giving us θ̂; afterwards, we created a confidence interval for this guess.
I stressed, heavily, that this confidence interval is not designed to express
any actual uncertainty in θ, because that goes against the classical philoso-
phy: which is that you cannot directly express uncertainty in unobservable
parameters using probability.

In Bayesian statistics, you can, and must, express uncertainty in unob-
servable parameters using probability. How this works might sound compli-
cated, and some of it is, but once you get how it works for, say, normal
distributions, you will then know how it works for every other statistics
problem in the world. This is not so for classical statistics, where you have
to memorize a new set of ad hoc functions for every problem. In this way,
Bayesian statistics is a vast simplification; however, before you can reach
this simplification plateau, you initially have to climb up a steeper hill than
you do classically. However, the good news is that there is only one hill to
climb.

Let’s recall the normal probability distribution (density function):

p(x|µ, σ,EN ) =
1√

2πσ2
e−

(x−µ)2

2σ2

written here as a function of x, or p(x|µ, σ,EN ) (we could have use N() as
before; the actual letter does not matter). Do you remember probability rule
number 4, or Bayes’s rule? If not, go back and re-read Chapter 2. Pay special
attention to equation (6). I’ll wait here until you’re done.

Back? OK, let’s write equation (6) using different letters, so that

Pr(B|AE) =
Pr(A|BE) Pr(B|E)

Pr(A|E)

becomes

(20) p(µ, σ|x,EN ) =
p(x|µ, σ,EN )p(µ, σ|EN )

p(x|EN )
,

where B is now (µ, σ) and A is x. Remember, (µ, σ) is shorthand for the
statement “The value of the central parameter is µ and the value of the
spread parameter is σ”, and x is shorthand for the statement X = “The
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value of the observed data is x.” We already know how to write p(x|µ, σ,EN )
mathematically. Our goal is to discover how to write the left-hand side,
which is the probability distribution of (µ, σ) given the data and EN . This
quantifies our uncertainty in (µ, σ) given what we learned in the data (and
considering the evidence EN ). In order to calculate the left-hand side, we
then also need to know p(µ, σ|EN ). We also need p(x|EN ), but once we know
p(µ, σ|EN ), it automatically pops out because of some math that need not
concern us here.

What is p(µ, σ|EN )? Well, it quantifies our uncertainty in (µ, σ) be-
fore seeing any data, that is, it is only conditional on EN . p(µ, σ|EN ) is a
probability distribution that you have to specify before you can get to the
probability p(µ, σ|x,EN ). It also has an official name, which is the prior, be-
cause it’s what you know about (µ, σ) prior to adding in information in the
data. Not surprisingly, then, p(µ, σ|x,EN ) is called the posterior, which is the
probability distribution expressing everything we know, all our uncertainty,
about (µ, σ) after having seen some data x.

How about the value of p(µ, σ|EN )? Well, it’s turns out to be a compli-
cated situation, but the gist of it is that p(µ, σ|EN ) explains the probability
of each possible value of (µ, σ), and since we initially know very little of
(µ, σ), every possible value of (µ, σ) is more or less equally probable. This
situation is called assigning a flat prior, the “flat” describing the shape of the
probability distribution picture (i.e., a flat line)4(for a discussion of priors,
see Jeffreys, 1998). Once you have the prior, and p(x|µ, σ,EN ), you can then
calculate the posterior using equation (20). Technically, since we are saying
(µ, σ) has a certain probability distribution, this is also information that we
should keep note of, but we’ll append this on EN so that it now means “The
uncertainty in the observable is quantified by a normal distribution and the
prior on the parameters is ‘flat’.” If we need to be careful about this, and
sometimes we do (not in this book), we can expand the notation to indicate
the exact kind of prior we use.

Now here is another little secret: for very simple situations, the
Bayesian results are the same as the classical results! No new calculations
have to be learned or done!

After we take some old data, we can calculate our full uncertainty in
(µ, σ) by drawing pictures of the probability distributions (we’ll do this
later). If we are forced to pick just one “best” value, we would pick the
arithmetic mean and standard deviation, exactly like in classical statistics.
If we wanted to express our uncertainty a little more fully than just using one
number (for each parameter), we could give the best number and an interval,
some plus/minus bound on how certain that best value actually matches the

4There is more than one prior that you can use besides this “flat” one, but the
differences it makes in the posteriors is minimal. Another problem is that the parameters
are usually assumed to be continuous numbers, and if you recall the discussion from
Chapter 4, you know these can be a problem. We will ignore all these difficulties in this
book.
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true value of (µ, σ). Here is the best part: the confidence interval, which was
meaningless before, is this interval, and is now called a credible interval. It
has the natural interpretation that there is a 95% chance that the true value
of the parameter lies in this interval. Isn’t that wild?

Before you start thinking, “Hey, if the results are the same, why did you
go on and on and on about how confidence intervals are meaningless? All
you did was to give them a new name! Big deal. You are wasting my time
and trying to confuse me.” Hold on a minute, though. The Bayesian results
are the same as the classical ones, but only for simple situations. The good
news for you is, that in this book, you hardly move beyond these very simple
situations. Once you do move into the great statistical beyond, like using
Binomial instead of normal distributions, the Bayesian methods really come
into their own, and then you cannot assume the classical computations give
you the correct answer. I’ll talk about these techniques as we move along.

6. Homework

(1) What, if anything, is wrong with this sentence, “The mean of this normal
distribution is 4, and the standard deviation is 2.”

(2) Look around you and directly measure an observable. Make at least eight
measures of each observable. Then, using R, calculate the classical esti-
mates µ̂ and σ̂. Store values in R like this example: x = c(3.4,5.2,6.9,1.2).

(3) I played petanque and measured the distance several times, assumed a
normal distribution to quantify uncertainty, and computed the mean,
which was -1.8 cm. The classical 95% confidence interval was -6.4 cm
to 2.8 cm. Which of the following statements which are true: (a) There is
a 95% chance that µ is in the interval; (b) There is at least a 95% chance
that µ̂ is in the interval; (c) If I were to play petanque 100 times and each
time I calculate a mean and construct a confidence interval, then about 95
of those intervals will contain µ; (d) Either µ is in the confidence interval
or it isn’t; (e) If I had made more throws in my game, i.e. had a larger
n (sample size), then I’d be more certain that µ was in my constructed
confidence interval.

(4) You read in a newspaper a story which reports that famous scientists
discovered that, “Using classical statistical methods, we are now 95%
confident that the mean age at which people develop conniption fits is 48
to 54 years.” There are two things wrong with this statement: what are
they? Try to answer succinctly.

(5) I played petanque and measured the distance several times, assumed a
normal distribution to quantify uncertainty, and computed the mean,
which was -1.5 cm. The Bayesian 95% credible interval was -2.8 cm to
1.4 cm. Which of the following statements which are true: (a) There is a
95% chance that µ is in the interval; (b) There is at least a 95% chance
that µ̂ is in the interval; (c) If I were to play petanque 100 times and each
time I calculate a mean and construct a confidence interval, then about 95
of those intervals will contain µ; (d) Either µ is in the confidence interval
or it isn’t; (e) If I had made more throws in my game, i.e. had a larger
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n (sample size), then I’d be more certain that µ was in my constructed
confidence interval.

(6) extra: What is the flaw in Neyman’s argument that, sure, your individ-
ual confidence interval has no probabilistic interpretation, but in the long
run, all confidence intervals created for all problems will cover their true
values 95% of the time?





CHAPTER 9

Estimating and Observables

1. Binomial estimation

In the 2007-2008 season, the Central Michigan football team won 7 out
of 12 regular season games. How many games will they win in the 2008-2009
season? In Chapter 4, we learned to quantify the probability in this number
using a binomial distribution, but we assumed we knew p, the probability
of winning any single game. If we do not know p, we can use the old data
from last season to help us make a guess about its value. It helps to think
of this old data as a string of wins and losses. So that, for the old x, we saw
x1 = 0, x2 = 1, . . . , x12 = 1, which we can summarize by k =

∑
i xi, where

k = 7 is the total number of wins in n = 12 games.
Here’s the binomial distribution written with an unknown parameter

(21) Pr(k|θ, n,EB) =

(
n

k

)
θk(1− θ)n−k

where θ is the success parameter and k the number of successes we observed
out of n chances.

How do we estimate θ? Two ways again, a classical and a modern. The
classical consists of picking some function of the observed data and calling

it θ̂, and then forming a confidence interval. In R we can get both at once
with this function

binom.test(7,12)

where you will see, among other things (ignore those other things for now),

95 percent confidence interval:

0.2766697 0.8483478

sample estimates:

probability of success

0.5833333

This means that θ̂ = 0.58 = 7/12 so again, the estimate is just the arithmetic
mean. The 95% confidence interval is 0.28 to 0.84. Easy. This confidence
interval has the same interpretation as the one for the µ̂, which means you
cannot say there is a 95% chance that θ is in this interval. You can only say,
“either θ is in this interval or it is not.

89
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Here is Bayes’s theorem again, written as functions like we did for the
normal distribution

(22) p(θ|k, n,EB) =
p(k|θ, n,EB)p(θ|EB)

p(k|n,EB)

We know p(k|n, θ,EB) (this is the binomial distribution), but we need to
specify p(θ|EB), which describes what we know about the success parameter
before we see any data, given only EB (p(k|n,EB) will pop out using the same
mathematics that gave us p(x|EN ) in equation (20)). We know that θ can
be any number between 0 and 1: we also know that it cannot be exactly 0
or 1 (see the homework). Since it can be any number between 0 and 1, and
we have no a priori knowledge which number is more likely than any other,
it may be best to suppose that each possible value is equally likely. This is
the flat prior again1. Again, technically EB should be modified to contain
this information. After we take the data, we can plot p(θ|k, n,EB) and see
the entire uncertainty in θ, or we can pick a “best” value, which is (roughly)

θ̂ = 0.58 = 7/12, or we can say that there is a 95% chance that θ is in
the (approximate) interval 0.28 to 0.84. I say “roughly” and “approximate”
here, because the classical approximation to the exact Bayesian solution
isn’t wonderful for the binomial distribution when the sample size is small.
The homework will show you how to compute the precise answers using R.

2. Back to observables

In our hot little hands, we now have an estimate of θ which equals
about 0.58. Does this answer the question we started with? That question
was How many games will CMU win in the 2008-2009 season? Knowing that
θ equals something like 0.58 does not answer this. Knowing that there is a
95% chance that θ is some number between 0.28 to 0.84 also does not answer
the question. This question is not about the unobservable parameter θ, but
about the future (in the sense of not yet seen) observable data. Now what?
This is one of the key sections in this entire book, so take a steady pace
here.

Suppose θ was exactly equal to 0.58. Then how many games will CMU
win? We obviously don’t know the exact number even if we knew θ, but
we could calculate the probability of winning 0 through 12 games using the
binomial distribution, just as we did in Chapters 3 and 4. We could even draw
the picture of the entire probability distribution given that θ was exactly
equal to 0.58. But θ might not be 0.58, right? There is some uncertainty
in its value, which is quantified by p(θ|kold, nold,EB), where now I have
put the subscript “old” on the old data values to make it explicit that we
are talking about the uncertainty in θ given previously observed data. The
parameter might equal, say, 0.08, and it also might equal 0.98, or any other

1Like before, there are more choices for this prior distribution, but given even a
modest sample size, the differences in the distribution of future observables due to them
is negligible
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value between 0 and 1. In each of these cases, given that θ exactly equalled
these numbers, we could draw a probability distribution for future games
won, or knew given nnew = 12 (12 games next season) and given the value
of θ. Make sure you understand this before reading further.

Let us draw the probability distribution expressing our uncertainty in
knew given nnew = 12 (and EB) for three different possible values of θ.

θθ == 0.08

knew|nnew θθ == 0.08

0 4 8 12

θθ == 0.58

knew|nnew θθ == 0.58

0 4 8 12

θθ == 0.98

knew|nnew θθ == 0.98

0 4 8 12

If θ does equal 0.08, we can see that the most likely number of games next
season is 1. But if θ equals 0.58, the most likely number of games won is 7;
while if θ equals 0.98, then CMU will most likely win all their games.

This means that the picture on the far left describes our uncertainty in
knew if θ = 0.08. What is the probability that θ = 0.08? We can get it from
equation (22), from p(θ|kold = 7, nold = 12,EB). The chance of θ = 0.08 is
about 1 in 100 million (we’ll learn how the computer does these calculations
in the homework). Not very big! This means that we are very very unlikely
to have our uncertainty quantified by the picture on the left. What is the
chance that θ = 0.98? About 3 in a trillion! Even less likely. How about
0.58? About 3 in 10,000. Still not too likely, but far more likely than either
of those other values. We don’t really need to know what the exact value of
θ is anyway.

This is because we could go through the same exercise for all the other
values that θ could take, each time drawing a picture of the probability
distribution of knew. Each one of these would have a certain probability
of being the correct probability distribution for the future data, given that
its value of θ was the correct value. But since we don’t know the actual
value of θ, but we do know the chance that θ takes any value, we can take
a weighted sum of these individual probability distributions to produce one
overall probability distribution that completely specifies our uncertainty in
knew given all the possible values of θ. This will leave us with

(23) Pr
(
knew|nnew, kold, nold,EB

)
.

Stare at equation (23) for two minutes without blinking. This, in words, is
the probability distribution that tells us everything we need to know about
future observables knew given that we know there will be nnew chances for
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knew|nnew kold nold
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Figure 1. The distribution of future numbers of successes
considering all possible values of θ (solid line), and for just
one value, θ = 0.58 (circles).

success this year, also given that we have seen the past observables kold and
nold, and assuming EB is true. Think about this. You do not know what
future values of k will be, do you? You do know what the past values are,
right? So this is the way to describe your uncertainty in what you do not
know given what you do know, taking full account of the uncertainty in θ,
which is not of real interest anyway.

The way to get to this equation uses math that is beyond what we can
do in this class, but that is unimportant, because the software can handle it
for you. This picture (Fig. 1) shows you what happens. The solid lines are
the probability distribution in equation (23). The circles plotted over it are
the probability distribution of a regular binomial assuming θ exactly equals
0.58. The key thing to notice is that the circles distribution, which assumes
θ ≡ 0.58 is too tight, too certain. It says the center values of 6 to 8 games
won are more certain than is warranted (their probability is higher than the
actual distribution). It agrees, coincidentally only, with the probability that
the future number of wins will be 5 or 9, but then gives too little probability
for wins less than 5 or greater than 9.

The actual distribution of future observable data (23) will always be
wider, more diffuse and spread out, less certain, than any distribution with
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xnew

−30 −20 −10 0 10 20 30

µµ == −− 6.8, σσ == 4.4

µµ == −− 1.8, σσ == 6.4

µµ == 2.8, σσ == 8.4

Figure 2. Three possible distributions of future observ-
ables, given three different sets of parameters.

a fixed θ. This means we must account for uncertainty in the parameter. If
we do not, we will be too certain. And if all we do is focus on the parameter,
using classical or Bayesian estimates, and we do not think about the future
observables, we will be far, far more certain than we should be. Unfortu-
nately, most statistical do stop short at parameters and so too many people
are too certain about too many things.

3. Even more observables

Let’s return to the petanque example and see if we can do the same thing
for the normal distribution that we just did for the binomial. The classical
guess of the central parameter was µ̂ = −1.8 cm, which matches the best
guess Bayesian estimate. The confidence/credible interval was -6.8 cm to 2.8
cm. In modern statistics, we can say that there is a 95% chance that µ is in
this interval. We also have a guess for σ, and a corresponding interval, but I
didn’t show it; the software will calculate it. We do have to think about σ as
well as µ, however—because both parameters are necessary to fully specify
the normal distribution.

As in the binomial example, we do not know what the exact value of
(µ, σ) is. But we have the posterior probability distribution p(µ, σ|xold,EN )
to help us make a guess. For every particular possible value of (µ, σ), we can
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xnew

−30 −20 −10 0 10 20 30

Figure 3. Distributions of future observables considering all
possible values of (µ, σ), and another given a fixed given a
fixed value of (µ = −1.8 cm, σ = 6.4 cm).

draw a picture of the probability distribution for future x given that that
particular value is the exact value.

Figure 2 shows the probability densities for xnew for three possible val-
ues of (µ, σ). If (µ = −6.8 cm, σ = 4.4 cm), the most likely values of xnew
are around 10 cm, with most probability given to values from -20 cm to 0
cm. On the other hand, if (µ = 2.8 cm, σ = 8.4 cm), the most likely values
of new x are a little larger than 0 cm, but with most probability for values
between -20 cm and 30 cm. If (µ = −1.8 cm, σ = 6.4 cm), future values of x
are intermediate of the other two guesses. These three pictures were drawn
(using the Advanced code from Chapter 5) assuming that the values of (µ, σ)
are the correct ones. Of course, they might be the right values, but we do
not know that. Instead, each of these three guesses, and every other possible
combination of (µ, σ), has a certain probability, given xold, of being true.

Given the old data, we can calculate the probability that (µ, σ) equals
each of these guesses (and equals every other possible combination of values).
We can then weight each of the new x distributions according to these
probabilities and draw a picture of the distributions of new values given old
ones (and the evidence EN ) like we just did for the binomial distribution.
This is

(24) p
(
xnew|xold,EN

)
.

Here is a picture (Fig. 3 of this distribution (generated by the computer, of
course)
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The solid line is equation (24), and dashed is a normal distribution with
(µ = −1.8 cm, σ = 6.4 cm). The two distributions do not look very different,
but they certainly are, especially for very large or very small values of xnew.
The dashed line is too narrow, giving too much probability for too narrow a
range of xnew. In fact, for distribution (24), values greater than 10 cm are
from the true distribution are twice as likely as the normal distribution where
we plugged in a single guess of (µ, σ); values greater than 20 cm are six times
as likely. The same thing is repeated for values less than -10 cm, or less than
-20 cm, and so on. Go back and read Chapter 6 6 to re-familiarize yourself
with the fact that very small changes in the central or spread parameter can
cause large changes in the probability of extreme numbers.

The point again, like in the binomial example, is that using the plug-in
normal distribution, the one where you assume you know the exact value of
(µ, σ), leads you to be far more certain than you really should be. You need
to take full account of the uncertainty in your guesses of (µ, σ), only then
will you be able to full quantify the uncertainty in the future values xnew.

4. Summary

Since this Chapter is so important, let’s sum up. We want to express un-
certainty in an unknown observable. We do that using a probability distribu-
tion. Probability distributions have parameters, variable numbers that are
needed to fully specify the distribution. The parameters are unobservable,
but we can express our uncertainty in them using previously observed data
(and other evidence). Almost all statistics methods, classical and Bayesian,
stop after they have said something about the unobservable parameters
(given some data and evidence). However, nearly all the time we are not
interested in the parameters (exceptions will be noted in Chapter 15), but
we are interested in unknown observables. So we have to express our uncer-
tainty in the future observables taking account the uncertainty we have in
the parameter values. Doing this will give us the true picture of uncertainty,
and we will fool ourselves far less often than using older statistical methods.

5. Homework

(1) When can’t the binomial success parameter exactly equal 0 or 1? When
can it?

(2) For the normal problem, write out a definition of p(µ, σ2|xold, EN ) and

p(µ, σ2|EN ). Explain what the difference between these two things are.
(3) Write out the difference between p(θ|kold, nold,EB) and

p(θ|EB).
(4) See the last homework question in Chapter 7. Type this in R:

source(url("http://wmbriggs.com/book/Rcode.R"))

Recall that this loads the file Rcode.R into R’s memory. You will now
have available two functions. The first is newdbinom(x, n new, k old,



96 9. ESTIMATING AND OBSERVABLES

n old) which operates just like dbinom(x,

n old, p) did, except it gives you the probability of seeing x new suc-
cesses out of n new chances given you saw k old successes out of n old

chances. The second function is newpnorm(x, x old) which operates some-
thing like pnorm(x, central,

spread), and gives you the probability of seeing values less than or equal
to x given the old data x old. These two functions first estimate the pos-
terior probabilities of θ and (µ, σ) (but you don’t see them) and then
uses these to calculate the probability distributions of future observables,
which are of main interest.

(5) Find something, some observable, the uncertainty of which can be mod-
eled by a binomial distribution. Count the number of times that thing
could have been a success, and count how many times it was a success.
An example might be “People you meet who watch wrestling on TV.”
Any observable that you think has a constant probability of a success
will do. State what the nold and kold were. Find the classical estimate

and confidence interval of θ̂. Now assume that the thing you picked will
have 3 more opportunities to be a success. That is nnew = 3. What is
the probability that knew = 0, 1, 2, 3? For the CMU football example, you
would type newdbinom(0:3, 3, 7, 12) (of course, in the CMU example,
we expect nnew = 12, but we are supposing we are only looking at the

first three games of the season). Use the estimate θ̂—-assume that this is

the exact probability of a success—in the function dbinom(0:3,n old,θ̂)
and compare this to the values given in newdbinom. Comment on the
differences.

(6) Find some observable the uncertainty of which can be approximated by
a normal distribution. An example might be “Number of pairs of shoes.”
Any observable that you think using a normal distribution to approxi-
mately quantifying the uncertainty of will do. In R, store that data as
x = c(ob1, ob2, ...) where ob1 is the first observation, and so on.
Find the classical estimate and confidence interval of µ̂. Find the classi-
cal estimate widehatσ. What is the probability that a new observation
is less than µ̂? Find this by typing newpnorm( mean(x), x). Also type
newpbnorm(mean(x) - sd(x), x)

and newpnorm(mean(x) + sd(x), x), which gives you the probability of
seeing new values less than µ̂− σ̂ and less than µ̂+ σ̂. Compare these to
the probabilities of seeing data using the classical estimates as plug ins.
For example pnorm(mean(x) - sd(x), mean(x), sd(x). Comment on
the differences.



CHAPTER 10

Testing

1. First Look

Here are two experiments:

(1) Uncle Ted wanted to test two promotional advertising campaigns
at two different restaurants at his chain of Kill ‘em and Grill ‘em
Venison Burger joints. For the Detroit restaurant, he gave out free
plastic antler-hat sets for the kids (call this campaign A), and for
Chicago he gave out, to the adults, one round of .30-06 Springfield
Ammunition, 180 Gr SP (Per 20) CB (call this campaign B). He
measured the number of venison sausage sandwiches sold over the
course of a week in both places and wondered which advertising
campaign was more effective. Before the campaign, both stores sold
about the same amount of sandwiches.

(2) The Army decided to test the hand-eye coordination of right-handed
recruits who had undergone a new version of super symmetric phys-
ical training by having them shoot aliens in the classic video game
Space Invaders. Twenty recruits first shot using their left hand,
then shot using their right hand. The number of aliens blasted us-
ing each hand was counted. The Army wanted to know whether
more aliens would be blasted using their “best”, i.e. right, hand:
it was hoped the super-symmetric training would make the hands
equally proficient.

Both of these situations are common, but slightly different. Uncle Ted
wants to know the difference between two advertising campaigns, where each
campaign presumably does not affect the another. The people in Chicago
do not hear about the antlers, and the folks in Detroit do not hear about
the ammo. The Army wants to know the difference in aliens blown away by
each recruit’s hand, but where we can guess that, for each recruit, the total
shot using either hand may be related; that is, some recruits may naturally
be better at video games than others, and would waste more aliens, so we
should somehow take this into account.

Start with the ad campaign. How can we tell if the effectiveness of the
two ads is different? Obviously, it has something to do with the number of
sausages sold. Suppose Detroit sold 1000 and Chicago 1005 over the first
week of the campaigns. Does that mean that the Chicago ad campaign did
a better job? In a way, yes. We already knew that before the campaigns
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the number of sausage sales in both cities was “about the same.” Is 1000
and 1005 about the same? Maybe; probably. What seems clear is that this
one data point, this one week of sales, is not enough information to be able
to tell if the results from the two campaigns will continue to be different.
Uncle Ted is going to have to suck it up, give the advertising agency more
money, and continue the ad campaigns for at least a few more weeks so he
can collect more data. Suppose he does, and here are the results:

Week 1 Week 2 . . . Week 20
Campaign A 302 355 . . . 402
Campaign B 280 426 . . . 418

The full dataset is on the class website. Incidentally, it is actually stored,
and should be stored, like this:

Campaign Sales Week
A 302 1
A 355 2
...

...
...

B 208 1
...

...
...

B 418 20

This is the more general way, and the way that makes it easiest to use
in software. Suppose that the number of weeks the campaigns lasted at each
store was different. Then storing data the first way stinks, because you have
an uneven number of columns between the two campaigns. Storing data the
later way means the weeks, even the number of campaigns (Uncle Ted may
expand to more cities, and have campaigns C, D, etc.) can be different. Plus
we can store more information by just adding another column, as we did a
few weeks back when we looked at how to store data.

What is the first thing you always do once you have collected some data?
You look at it. You certainly do not just run some pre-packaged statistical
procedure. Failing to look at their data first is the biggest mistake people
make. Do not be lazy. Look first. Always.

How do we look at this data? We already know that the two campaigns
cannot influence one another, in the sense that knowledge of what happens
in one campaign is irrelevant to knowing what happens in the other. So we
can look at each campaigns’ data somewhat independently. Looking at data
is somewhat of an art; there are few hard rules that say, “For situation 1, use
a boxplot; for 2 use a scatter; and so on.” No, we often plot and re-plot and
re-re-plot and re-re-...—you get the idea—until we find a way that displays
the data nicely.
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In this case, we already have some experience with data like this: namely,
simple summaries, boxplots, histograms, and density estimates. Let’s first
read this data into R and see what we can come up with.

x = read.csv(url("http://wmbriggs.com/book/advertising.csv"))

summary(x)

If you want to create your own data set, open a spread sheet (like OpenOffice.org)
and save it as a CSV file, like was discussed in Chapter 7. Store the file some
place on your hard disk that you can remember, and read it in like this:

x = read.csv("C:/mydata/MyFile.csv")

The summary information of the advertising.csv data is somewhat
useful, but it doesn’t break the means etc. down by campaigns. We only see
the overall mean, median, etc., and count of the number of campaign As
and Bs we had. We have to do something else.

attach(x)

boxplot(Sales~Campaign)

Recall that the attach(x) function makes the variable names of the data x
“visible” to R. If you forget this step—and you will, you will—you’ll see this
error1

Error in eval(expr, envir, enclos):object "Sales" not found

You can always forgo the attach(x) command if you tell the boxplot()
function which data you had in mind.

boxplot(Sales~Campaign,data=x)

but it’s a pain to type all that extra stuff.
Anyway, here’s what you get:

Sa
les

A B

30
0

35
0

40
0

45
0

50
0

55
0

Sales

250 350 450 550

A
B

Pretty nifty, eh? We can directly compare, at least roughly, the distribu-
tion of the observables (sales) side by side. There is at least some different
between the two campaigns.

advanced: The other, more complicated plot, is done like this (see the
Advanced Section in Chapter 7)

1For goodness’ sake: do not panic when this happens.
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plot(density(Sales[Campaign=="A"]))

lines(density(Sales[Campaign=="B"]),lty=2,col=2)

This creates the two density estimates of the observables, and plots them
together. The first line plots the density of sales figures only at those times
when Campaign=="A" (those brackets tell R to look for a subset, the state-
ment tells it which one). Recall the density estimates are fancy, souped-up
histograms. Don’t worry about trying to remember how this is accomplished.
You can always look it up. Sometimes it comes in handy. (You can try to
stick histograms side by side, too, but that’s ugly and makes it hard to
compare what is happening.)

What can we notice about the boxplots? The number of weekly sales is
on the vertical axis, the two campaigns on the horizontal. The medians are
in different places, meaning, of course, that the number of sales was different
over the weeks in the two cities. The “spread,” the distance between the two
extreme quantiles, of the two distributions isn’t quite the same. There’s no
need to be precise about this; we’re just getting a qualitative feel. If the two
distributions are wildly different, say, the spread is nowhere near the same,
or one or both distributions show asymmetry in the quantiles, then you will
need to do something you won’t learn in this book.

You might also need to do a time series plot of the data, since the
campaigns’ effectiveness may weaken, strengthen, or do anything in between
these, over time. If the data do look like there’s some kind of “signal”,
or changes through time, you cannot use the techniques you’ll learn here.
Although, of course, many people do; at the very least, it will only be an
approximation. This is fine if you know what you’re doing, but if you don’t,
then you are misleading yourself, others, and humanity in general. (To get
a time series plot, type plot(Sales[Campaign=="A"],type=’l’) and the
same for B.)

2. Classical 1

We now move into the quaint, and very confusing, realm of Hypothesis
Testing. That’s the classical term, anyway, for the statistical methods of
deciding when things are different. A slightly more modern term is decision
analysis, which is more descriptive, but is a field that does more things than
you normally get in a book like this.

Here is the main question again. We have several weeks of sales in two
cities where two different ad campaigns have run. What is the probability
that the sales of sausages is different due to the ad campaigns? Sadly—very
sadly—it turns out that we cannot answer that question directly in classical
statistics: in hypothesis testing we can never say anything directly about the
observables, neither can we make direct statements about parameters. Yes,
differences in the observables is we want to know, but the best we can do
classically is to answer a proxy question.
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The proxy question always goes like this (pay attention here, this is hard,
hard stuff to understand): Assume that the uncertainty in the observables, in
the different categories like sales campaigns, can be quantified by probability
distributions. This, as we already know, is a reasonable thing to do. These
probability distributions, as we also know, will have certain parameters: like
µ and σ2 for the normal, or θ for the binomial.

We then assume that at least some of these parameters will have different
values in the different categories: e.g. a µA for ad campaign A and µB for
campaign B; while it may be that σ2A = σ2B or σ2A 6= σ2Bfor both campaigns.
That is, the uncertainty in the sales for different campaigns will quantified
by normals distributions with the same spread parameter (usually), but with
different central parameters.

Last Chapter, we learned how to estimate central parameters. This
means that µ̂A is the mean of sales in campaign (or city) A. This turns
out to be (glance at the boxplot; we’ll learn how to do this officially in a
moment) µ̂A = SalesA = 421 and µ̂B = SalesB = 440. Sit down for this next
question. What is the probability that SalesA = SalesB? This is not a trick
question!

The probability is 0; that is, it is false that the two means are equal. One
mean is 421 and the other is 440. These numbers are obviously not equal.
Do not laugh.

Now a different question. What is the probability that µA = µB (we
already know that µ̂A 6= µ̂B)?. It turns out that this question is forbidden in
classical statistics. The reason it is forbidden is that, if you remember, and
you should, you are not allowed to make probability statements about un-
observable parameters. Asking the question is ruled out. Instead, classically,
we turn the question around and ask something else.

Let’s be sure where we are first. We have two sets of data, from two cam-
paigns, the uncertainty of both sets quantified by normal distributions, each
with its own central parameters, but both share the same spread parameter.
We want to use the data we have to ask questions about the differences in
the ad campaigns, such as are sales A greater than sales B? Or are sales A
at least thirty-percent larger than B, and so on. If the sales campaigns were
ceased tomorrow for all time, our work would be done, would it not? We
could sum up the sales in city A and those in B and easily say whether sales
of A were larger than B, or that they were at least thirty-percent larger, or
whatever question about the observable sales we wanted to ask. We do not
need any fancy statistics, or hypothesis testing, unless we are asking ques-
tions about data not yet seen. That is, data we might see if we extended the
ad campaigns into the future. Make sure this is stuck firmly to your sticking
place before reading further.

Thus, assuming we will see future data, the following procedure is used
classically:
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(1) First, assume µA = µB (along with assuming normal distributions
etc.).

(2) Calculate a statistic t(x), which is an ad hoc function of the data
(you look these up in books, or trust the software to do them for
you. Incidentally, this is usually called “differences in the means
problem”, which makes no sense because we already know whether
the means are different).

(3) Then calculate this magic number:

(25) p-value = Pr(T (x) > |t(x)| |µA = µB, σA = σB,EN )

which is read, “The probability of seeing the statistic T (x) as large
or larger (in absolute value) than the statistic t(x) I did see given
µA = µB, if I repeated the experiment/trial/campaign an infinite
number of additional times.” That is, if you were to endlessly re-
peat the ad campaign (for 20 weeks each time, matching the sample
size we had before), and each of these endless times you calculated
a t(x), then the p-value measures the chance that these other sta-
tistics exceed (in absolute value) the one (t(x)) you actually got
using the observed data.

(4) You must memorize this: the p-value is not the probability that
µA = µB, nor that µA > µB, nor is it any other direct statement
about the unobservable parameters. It is a probability statement
about a function of the observed data assuming something about
the unobservable parameters.

(5) A ridiculous2 tradition has developed that if your p-value ≤ 0.05
then you are allowed to say that your results are statistically signif-
icant. If your p-value is larger than this publishable level, then you
are cast out beyond the gate where there is weeping and gnashing
of teeth. If you somehow do get a p-value larger than 0.05, do not
despair; see Chapter 14 for why.

There are no rules (except habit) that specify which statistic t(x) to use
in any situation except this: you must be able to figure out the probability
distribution of this statistic given µA = µB. This distribution is needed to
calculate the p-value (this is how you calculate the probability that another
statistics is larger than your statistic). For any given problem, there are
always lots of choices of statistics, and you are free to pick the one that
gives the best results. Cheating? See Chapter 14.

Stating that µA = µB, that is, that the two central parameters are the
same, is called stating the null hypothesis (you are hypothesizing that the
central parameters are equal). If your p-value ≤ 0.05, then you are said to
reject the null hypothesis; that is, to indirectly conclude that µA 6= µB. If
your p-value > 0.05 then you are said to fail to reject the null hypothesis,

2And it is ridiculous. I recently had a client who was near tears because her p-value
was—and I am not kidding—0.052. “Isn’t there anything we can do to make it significant?”
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not that you accept it, because, after all, how can you know if µA = µB?
You cannot!

What people say is that if Pr(T (x) > |t(x)| |µA = µB, σA = σB,EN ) is
very low, then it is unlikely that the given information, i.e. µA = µB, σA =
σB,EN , is suspect. Actually, they usually just say that µA = µB is suspect,
else it would not be so improbable to get a larger statistic. Unfortunately, this
ignores the fact that you might get just a small a p-value if, say, µA = 2∗µB,
or µA < µB, or whatever (Berger and Selke, 1987). You can get a smaller p-
value, given some different, alternate hypothesis about the parameter values!

All right, that’s a lot of thinking for you to do. The key points are
that you cannot—you can never—make any probability statements about
unobservable parameters classically. So you are forced into making weird
indirect statements. You also do not make direct statements about actual
observables—which are our main interest—only about the parameters. Inci-
dentally, the statistics t(x) that you calculate are decided upon by tradition,
mostly.

Here is a key fact: nobody ever remembers the definition of a p-value.
Journal editors never remember. Even statisticians typically won’t remem-
ber. Everybody will be tempted beyond their capacity to resist to say,
when their p-value is less than the magic number, that the probability that
µA 6= µB is high, despite the fact that this kind of statement is heresy in
classical statistics. Even worse, they might say that x 6= y, or some other
false proposition about the observables, is highly probable. Too, if your p-
value is greater than the publishable limit, you will ache to (fasely) declare
“It is highly probable that µA = µB.” Or, worse, that it is highly probable
that future x = y. You, and everybody else, will simply not be able to help
it. You will surrender to the seductive call of the p-value, I promise you.

Now, unlike confidence intervals, which actually have no useful meaning,
p-values do. The probability statements you make, given all the assumptions
are true, are perfectly accurate. There is nothing, then, directly wrong with a
p-value, as there was with confidence intervals. But they are evil nonetheless,
because they do not answer the questions you need answered, so I discourage
their use.

We are about to meet the most-used t(x) in problems like the ad cam-
paign. It is called the “t-statistic.” In R (once the data is read in and at-
tached)

t.test(Sales~Campaign)

One version in math:

(26) t(x) =
SalesA − SalesB√

s2A
nA

+
s2B
nB

where sA and nA are the calculated standard deviations and number of data
points for campaign A, etc. You can see that this is just a simple function
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of the difference in observed means. If t(x) is “big” (in absolute value), then
you get a low p-value. If t(x) is small, then you get a high p-value.

In R, you will see something like this

data: Sales by Campaign

t = -1.3285, df = 30.94, p-value = 0.1937

alternative hypothesis: true difference in

means is not equal to 0

95 percent confidence interval:

-48.17209 10.17209

sample estimates:

mean in group A mean in group B

420.75 439.75

The t-statistic is there, the p-value, calculated automatically, is also.
The “df” means “degrees of freedom”, it is holdover terminology from long
ago (borrowed from mechanics); think of it as a function of the sample size.
It is needed to figure out the probability distribution for t-statistics. The
official “alternate hypothesis” is given, but using incorrect terminology. We
already know the means are different; the true alternate hypothesis should
read µA 6= µB. The observed means of both groups is at the bottom, but for
no good reason, the actual differences in means is left for you to do by hand
(420.75− 439.75 = −19). Ignore the confidence intervals business for now.

The good news is that the R function t.test does not assume that σA =
σB (there are actually more than one statistic that goes by the name “t-
statistic”, but the differences are minor). This means the p-value is actually
Pr(T (x) > |t(x)| |µA = µB,EN ) (there is no dependence on the spread
parameters).

The p-value is a non-publishable 0.19, and it means what? Classically,
you fail to reject the “null”. You do not accept it. What is the probability
that µA < µB? What is the probability that future A<B? We cannot answer
these questions classically.

That’s more or less it. Every single other hypothesis testing problem fits
into the sales campaign paradigm.

3. Classical 2

Let’s enlist in the Army problem3. The main difference between it and
the ad campaign problem is the nature of the data. The ad campaigns do not
influence one another, but the left and right hand of each recruit is obviously
related. The differences between the recruits are like differences between the
cities, in that there is no known relation between them. Well, known to us,
anyway. There is always the possibility that certain batches or subgroups of
recruits will perform differently due to some reason that was not measured,
such as recruits coming from a deprived upbringing, or regions with little
access to technology (like Ohio). We might expect that these unfortunate

3Five extra credit points for those who laugh at this joke.
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souls would score more poorly than their more advanced cousins. But, like
we said, we do not know this information for this particular problem.

What’s usually done in these situations is to create a measure that re-
moves the dependency in some way, and the most usual way to do this is to
take a difference within the groups, which are the recruits and their hands.
So, instead of keeping track of the left-hand and the right-hand score for
each recruit, we create the difference measure

xi = left-hand scorei − right-hand scorei

for each recruit i = 1 . . . n. All we have left is n numbers x1 . . . xn. Recall
what the Army had hoped: that the difference in scores between hands would
be small or non-existent. If so, this would mean the xi would be near 0. (We
do not have to actually compute these xi, the software will do it for us.)

What are the classical steps? First assume that our uncertainty in xi
is quantified by a normal distribution with central and spread parameters.
Then assume that µ = 0 (why?). Second, calculate some statistic, which
here is—surprise!—also called a t-test. Supposing the left and right hand
data is coded by its natural name, then in R we get it like this

t.test(left,right,paired=T)

where the only change from the other t-test is the paired=TRUE (or paried=T),
to indicate the hands are part of a pair. The third step? Right, calculate the
magic number. For us, suppose it is 0.051. What does that mean?

4. Modern

Similar to classical estimation, for these simple problems, the modern
default Bayesian calculations turn out to be the same as the classical calcu-
lations, but again with different interpretations, though it’s a little trickier
in parts. Let’s go back to the ad campaign t.test computer output and
look at the part that said

95 percent confidence interval:

-48.17209 10.17209

In Bayesian statistics, confidence intervals become credible intervals, but
what is this confidence/credible interval for? We already know how to esti-
mate µA and µB, and how to express our uncertainty in these parameters
given the past data. It turns out that we can also directly estimate the “joint
parameter” µA− µB (or any other function of the two), and we can express
our uncertainty in it given the past data. The best estimate of µA − µB is
the observed difference in means SalesA − SalesB = 420.75− 439.75 = −19.
The confidence/credible interval for this difference is the one given by the
function t.test.

The credible interval states that there is a 95% chance that the difference
µA−µB lies in the stated interval. This is, of course, a part, but only a small
part, of what you really want to know. Recall, that this is a probability
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statement about unobservable parameters. We’ll talk about how to answer
important questions about observables later.

Another common thing to want to know is the probability that the
difference µA − µB is actually greater (or lesser) than 0 (or anything other
number that might be of interest). This—we all remember by now—is not
a question that can be answered, or even asked, in classical statistics. Here
is a rough way to find this probability:

(27) Pr(µA − µB > 0|x,EN ) ≈ 1− p-value

2
.

Be careful! This approximation is extremely crude once you venture even a
little beyond the simple t-test scenario where all the assumptions are met. In
our example, Pr(µA−µB > 0|x,EN ) ≈ 1−0.19/2 = 0.91. Since Pr(µA−µB >
0|x,EN ) + Pr(µA−µB < 0|x,EN ) = 1, then Pr(µA−µB < 0|x,EN ) ≈ 0.09.
We will see how to tighten up this guess in a couple of Chapters, when we
learn a unifying way to treat modern problems like this.

T-tests are only used in simple situations. Strike that. I should say that
t-tests should be used only in simple situations. What really happens is that
people apply them indiscriminately, strewing p-values like confetti. That’s
bad enough, but then they persist in calling t-tests as “differences between
means” tests, which is wrong. Technically, and we might as well be technical
since this is a technical concept, the classical t-test is not even a “differ-
ences between central parameters” test, since it is always assumed that the
differences in central parameters is null (or 0).

Later, we are going to learn that even if we have a thrillingly small p-
value, and even if Pr(µA − µB > 0|x,EN ) is near 1, that it still does not
necessarily say that the probability os new observable As and Bs will be
different. By concentrating solely on parameters, we will end up being too
sure of ourselves.

5. Homework

(1) What is the first thing you always do when you start a data analysis?
(2) In classical hypothesis testing, what kind of probability statements about

differences in the observables (for example, differences between means)
can you make?

(3) In classical hypothesis testing, what kind of probability statements about
differences in the unobservable parameters can you make ?

(4) In classical hypothesis testing, what can you say about differences in the
observables or parameters?

(5) In classical hypothesis testing, what is the so-called “null hypothesis”
and the “alternative hypothesis” in the advertising campaign example?
Be careful about your wording!

(6) In classical hypothesis testing, what is the so-called “null hypothesis” and
the “alternative hypothesis” in the army example? Be careful about your
wording!
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(7) Think of a situation like Uncle Ted’s advertising campaign. Come up
with a plausible scenario, with real-life data, using an observable the un-
certainty of which can be approximately quantified by a normal distri-
bution, and which you can measure in at least two different groups. For
example, you might ask if somebody is an underclassman (freshman or
sophomore), or upperclassman (junior or above) and see how many credit
hours they are signed up for, or how many times they touch a mirror dur-
ing the day4; or if they are male or female and how many pairs of shoes
they own. In any case, two different groups of people, measuring the same
thing in both groups. Store the data like the ad campaign advertising.csv
and read it into R. Then create the per-group comparison boxplot and
do the classical t-test. Also compute the Bayesian probabilities (using the
p-value approximation). Show the data, the plot, and the results from the
test.

(8) Keep this data at hand. It might become the basis of your book project,
described in the Preface.

4This scenario came from a homework I gave, where a fraternity member asked males
and females how many times they touched a mirror. The student was surprised to find he
was the only one with this particular proclivity.





CHAPTER 11

More Testing

1. Proportions

Here is another experiment:

• You stand, at a specific time, at a certain intersection and note who
comes by a fixed point, either a male or female. You mark down
whether these people have some sort of device that helps prevent
them from thinking or being alone with their thoughts; namely,
earphones from an iPod, cell-phone, or similar device. It is your
hypothesis that just as many males being affixed to such a device
as females.

These kinds of experiments are easier to understand than the previous
one, because there’s only one thing to think about. So let’s call it a “success”1

if a person is attached to a thinking suppression device, or TSD. We will
obviously know, after you’ve taken your survey, for each sex, the number of
successes and failures. But before you start your survey you did not know
how many men and women would wear a TSD. Since you did not know, you
chose to quantify your uncertainty with a probability distribution. Does this
situation remind you of any particular probability distribution?—if it doesn’t
by now, you are in deep kimchi—for it should bring to mind the binomial
distribution. Which we all remember has only one unknown parameter, θ,
which is the success parameter. In this experiment, we have two of these
parameters, one for males (M) and one for females (F).

Your hypothesis is that the probability of success is the same for both
males and females, or that θM = θF . Suppose, as you sat at your corner, you
saw kold, M = 14 out of nold, M = 20, and kold, F = 12 out of nold, F =

15. What is the probability that the mean (or rate) of males is the same as
the mean as females? You know by now that this is not a trick question.

The mean of males is 14/20 = 0.7 = θ̂M and the mean of females is 12/15 =

0.8 = θ̂F . You can state authoritatively that the probability these means are
equal is 0, that is, it is false that they are equal. Are we done?

Maybe. If all you were interested in where those 20 + 15 = 35 people,
then you are done. You can say with certainty that a greater proportion of
women wore a TSD. There is really nothing more to say. Pause and reflect
on this statement: it is a key point in this book.

1For Steve Jobs, anyway.
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You would not be finished if you were curious about the proportion of
women and men who would wear a TSD the next day, or on any other
day—where the future men and women who walk by would be the “same”
as the old men and women in some sense. What does that mean? Suppose
on the first day that a bus pulled up to your intersection and disgorged
its passengers. The bus transported a group of college students from a big
hockey game. It was these students you counted. Tomorrow, no hockey, and
all you expect to see, say, are businessmen and women. Would this change
the characteristics of the people who walk by, would they be the “same” as
the college students, in the sense that the probability they wear a TSD is the
same? Maybe. This is a tricky area. It might be that the people tomorrow
are different from the people today, such that there is expected to be a
difference in the probability they wear a TSD. But it might not. If you do
not take additional steps to measure this difference, you will never be able to
say. At the very least, the characteristics of the people you measure become
part of your list of premises, you background evidence E. To be explicit, the
proposition E at least contains this clause “The people we measure look like
those who pass by this corner at the time and place we measured them.”
This is a topic that requires deep thought. See Chapter 14 for more details.

The main point is that the results are for quantifying uncertainty in
future data. For instance, if tomorrow you expect to see 10 men and 10
women, how many of those men would wear a TSD, how many women? You
don’t know, are uncertain, etc. Do you expect more women than men? That
is the real question, but we’ll put that one off for a moment and first ask an
indirect question about the success parameters. We’ll do this in the classical
and modern way.

The steps to test classically are the same (they are always the same) as
they were when your uncertainty was represented by a normal distribution.
These steps are: First, assume that your uncertainty in the data is quantified
by a binomial distribution for both sexes, and that θM = θF (what is this
odd proposition called?). Next, a statistic is calculated. For shorthand, let

θ̂M = xold, M/nold, M, and similarly for females. Then one of the most-

used classical statistics is

(28) z(x) =
θ̂M − θ̂F√

θ̂M (1−θ̂M )
nM

+ θ̂F (1−θ̂F )
nF

which should remind you quite a bit of the t-statistic. It’s a difference in the
observed means, dividing by a function of the observed standard deviations.
What’s next? Yes, the p-value, which here is

p-value = Pr(Z(x) > |z(x)| |x, θM = θF ,EB)

Don’t forget that EB tacitly includes the evidence that future populations
will “look like” your previous population.

To get this in R
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prop.test(c(k_Males, k_Females), c(n_Males, n_Females))

It’s a little awkward because you have to type in four numbers, two
total successes and two “n”s, and you have to remember to concatenate the
numerators and denominators with the c function. The output looks like
this

2-sample test for equality of proportions

with continuity correction

data: c(14, 12) out of c(20, 15)

X-squared = 0.0779, df = 1, p-value = 0.7802

alternative hypothesis: two.sided

95 percent confidence interval:

-0.4434840 0.2434840

sample estimates:

prop 1 prop 2

0.7 0.8

You’ll immediately see, if you are observant, that there is something called a
X-squared, which, mathematically, is a χ2 (pronounced chi-squared) which
is a different statistic than the z(x) shown above. Well, close enough. Re-
member that there are always many, many choices of statistics you can use
in any given problem. I showed you the z(x) statistic, and R gave you a χ2,
but it could have given you “Fisher’s exact”, or a slew of others. The idea
behind them is the same.

There are other peculiarities to notice. The classical “null” hypothesis is
θM = θF , which means the “alternate” is two.sided, or θM 6= θF . There is,
like in the t.test, a df, which is still “degrees of freedom”, and is necessary
to compute the mathematical χ2 distribution. The proportions, or props, are
there, and again you are left to compute their difference by hand 0.7−0.8 =
−0.1. Ignore the confidence interval for now.

The p-value is a disappointing 0.14. Which means what? You fail to
reject the “null”. You do not accept it. What is the probability that θM <
θF ? We cannot answer this question classically.

One last thing. There are some words in the output saying something
about a “continuity correction”. What is that about? Remember that
we (the computer, actually) chose the χ2 statistic because we knew how
to mathematically compute its probability distribution given θM = θF . It
turns out that we don’t know how to exactly compute the χ2 distribution
unless the sample is “large” (meaning going towards infinity). What we can
calculate, when the sample size is not infinite, is an approximation to this
distribution. To make the approximation better, the data you observed is
inflated by a small amount. This doesn’t change the observed means (which
are proportions here), but it does effect the p-value. Since you are stuck with
the sample size you have, there isn’t much you can do about this (except to
choose another, different statistic, which will give you a different, possibly
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lower and therefore more appealing, p-value, but that would be cheating,
wouldn’t it?).

2. Power & Real Significance

Up to this point, we have been talking about using the hackneyed 0.05
for our criterion of classical significance. If the p-value of a classical test is
less than this number the results are said to be “statistically significant.”
That 0.05 number is called the level of the classical test. We have also been
computing 95% confidence intervals, and it is no coincidence that the two
numbers are related (100% - 5% = 95%, right?). It turns out that you can
mathematically show that the decisions you make using classical confidence
intervals and or classical tests would be the same. For example, when your
uncertainty about two groups A and B is quantified by normal distributions,
and if Pr(T (x) > |t(x)| |µA = µB,EN ) is less than 0.05, this is the same as
saying that the 95% confidence interval of the estimate for µA−µB does not
contain 0. It is not really necessary to remember this, as the software you
use will usually give you both numbers. However, as I stress repeatedly, if
the p-value is 0.05 it does not mean that µA 6= µB. You might decide to act
as if µA 6= µB, but there is no way to know classically, given the data you
observed, the probability this decision is the right one.

The modern version of statistics directly tells you, given the old data and
some evidence E, the probability that µA < µB, or µA > µB, or µA < 2µB,
or whatever function f(µA, µB) that might be of interest to you. Modern
methods gives you this direct probability and you make the decision whether
this probability is high enough or low enough to make and act on the deci-
sion, say, that µA < 2µB (this still does not directly tell you anything about
future observable data).

Let’s splay this open a little more. Suppose that you have not yet taken
any data. What is the probability that µA < µB given EN (recall the EN
has tacit information on the prior distributions of (µ, σ) for groups A and
B)? If you have no information except for EN , then it should be intuitively
obvious that it is just as likely that µA < µB or µA > µB. Do not read more
until you understand this.

Incidentally, classical statistics can say nothing in this case. Some data
has to be taken before you can say anything about the parameters. As
always, classical statistics cannot make a probability statement about µA <
µB or µA > µB or any other question you might have about the parameters.

Now take one data point. In modern statistics, you can calculate the
probability, given this data point and EN , of µA < µB. It will probably be
the case that the probability that µA < µB is not much different than 0.5.
After all, you have only seen one additional piece of evidence (additional to
EN , of course), so you cannot expect the probabilities to change too much.

Classical statistics can still say nothing in this case. It can’t really say
anything until at least four different data points are take, assuming at least
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two observations come from each group. Well, that’s hard luck for classical
statistics, but the idea behind this is similar in spirit—enough data has to
be taken to make some kind of sense of the guesses we make.

If you only take one or two pieces of data, or only a few, it should be
intuitive to you that you learn nothing or little about the parameters given
this data. If you take a lot of data, you learn a lot about the parameters.
This is the idea of power. More data means more certainty in the guesses you
make, it implies that your posterior probability of the parameters is very
tight, meaning that a lot of probability is given to a very narrow interval,
meaning you are more certain what the actual values are.

In modern statistics, power is built right in. The posterior distribution
of the parameters tells you how certain you should be about their values.
Less data means wider, more spread out probability, less certainty about
the parameter values; more data means narrow, tighter probability, more
certainty about the parameter values.

Classical statistics does not have this advantage. Recall that the p-value
is used to indirectly infer whether the so-called null hypothesis is true or
false, usually phrased as µA = µB (for uncertainty quantified by normals)
and θA = θB (for uncertainty quantified by binomials). If the p-value is less
than the magic number, then you announce “µA does not equal µB” or “θA
does not equal θB” even though, obviously, you cannot be certain that these
statements are true, you just act like they are. If the p-value is big, then
you say “I fail to reject the idea that µA does not equal µB” or “I fail to
reject the idea that θA does not equal θB”, which is just confusing. What
is the probability that you are right or wrong in both cases given the data
you just observed? Can’t say. But you can say what this probability of being
right and wrong would be if you were to repeat your experiment an infinite
number of times. If you say that µA 6= µB then if µA = µB, you will be
incorrect 5% of the time (in this infinite series), which is the test level. If
you fail to say µA 6= µB, then if µA 6= µB you will be incorrect some about of
time that we can call β (by tradition). Then 1− β is called the power of the
classical (infinite series of) tests. Confused? Don’t worry, most people are,
and most people never remember, which is why so many people misinterpret
the p-value and classical power.

In modern statistics, you say “Given just the data I observed, and my
evidence E, the probability that µA < µB is this-and-such” or “Given just
the data I observed, and my evidence E, the probability that θA < θB is
this-and-such.” We can replace these inequalities by any function of the
parameters we want, say, µA < 2µB. You as the statistician then give your
customer that actual probability of whatever hypothesis is interesting and
let him decide whether this probability is high enough or low enough to make
the decision that µA < µB or θA < θB. This is a tremendous advantage over
the old way of making the judgment for him.
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3. Back to observables: normal

Eventually, if you take enough data, you’ll be certain enough about the
parameter values; that is, you’ll be so sure what the values of the parameters
are that it will cause no grief for you to say you know their values exactly
(technically, the proposition “The central parameter µ equals 28.2” is a con-
tingent statement, which based on our evidence can never have probability
0 or 1, but it can have probability 1− ε, where ε is a number as small as you
want as long as it is greater than 0).

Suppose Uncle Ted ran his ad campaigns A and B so many times that the
posterior probabilities of the central parameters are nearly certain to be just
one value (for each campaign). For example, µA ≈ mA and µB ≈ mB, where
we switch to Latin letters to indicate that we know the values precisely.
Now let mA = 420 and mB = 420.01 (recall this is the central parameter
for the number of sandwiches sold in a week). What is the probability that
mA = mB? Again, this is not a trick question. It is no different than asking,
what is the probability that 7 = 104? The probability is 0 in both cases. The
values are certainly not equal. Congratulations! You have just proven that,
given our evidence EN , campaign B is better than A. There is no ambiguity:
B is better than A and that is that.

But is mA enough smaller than mB to make any difference in sausage
sales? Well, yes. As long as sA = sB, if mB > mA, then campaign B is better
because (we recall from Chapter 4) it has a higher probability of larger
numbers of sausage sales. In reality, however, the difference is miniscule
and not in the least interesting. The difference between the two campaigns
is real, it is certain, and you could announce to the world that you have
proved a “statistically significant” difference, and that giving out bullets is
better than offering free antler sets. You can then go further and say that
this implies “Americans are becoming more bloodthirsty as a new study
shows that they prefer bullets over antlers.” Well, enough of that for now.
See Chapter 14 for more.

Why so much interest in the parameters? The real question is: Given the
difference in the parameters, how different are actual measurable observable
sausage sales? Because we know the exact values of the parameters does not
mean that we know the values of the observables. Obviously, we do not. If we
knew the values of the observables, we would not have needed probability
to begin with!

Let’s work through an example. Suppose, after a long period of time, we
conclude that µA ≈ mA = 420 and µB ≈ mB = 421, and similarly for the
spread parameters, say σA = σB = sA = sB = 46. What is the probability,
given our data and EN , that µA = µB? It is 0 precisely: we are certain that
the parameters are different. But what is the probability that next week’s
sausage sales under campaign A are less than the sales under campaign B?
It is not 0. In fact (calculations show) it is only 50.4%! This result should
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shock you. If it does not, then go back to the beginning of this Section and
re-read it. (We will learn how to do this calculation in a couple of Chapters.)

This is a key point! The measly difference in central parameters which we
knew with absolute certainty, i.e. saying mA < mB with boastful confidence,
only translated into very little certainty that the SalesA < SalesB.

What if the difference in central parameters was an astounding 100, that
is mA = 420 and mB = 520, then what is the probability of the sales in A
being less than B? Only 86%!2 That means there is still a respectable 14%
chance that sales in A will beat sales in B. Differences, even huge differences,
in parameters do not necessarily translate into great confidence that future
observables will be different.

It’s even worse than it seems. For we rarely or never really do know the
exact values of the parameters. The best we can do is to present the posterior
distributions of the parameters. Thus, instead of stating that mA < mB is
certainly true, the best we can say µA < µB has a only a chance at being
true. Since this is the case, we have to carry this uncertainty through to the
uncertainty we have in the future observables.

Using the actual data (last Chapter), we estimated that the probability
that µA < µB was about 0.9. The software also lets us estimate the posterior
distributions of σA and σB. But what is the probability that next week’s sales
under campaign A is less than sales under campaign B given the past data
and EN? Only 60%! (We’ll learn how to do these calculations later.)

Think about this. If you knew nothing (collected no data) about this
situation except that there were two campaigns and that one of them will do
better than the other, then the probability, under this evidence, of SalesA <
SalesB is 50%. Adding the evidence of 20 weeks of actual data only improved
the sharpness of this guess marginally: that is, we moved from 50% certainty
to only 60% certainty. We were 90% certain there was a difference in central
parameters, but only 60% sure that there would be a difference in actual
observables.

To emphasize again: certainty in the unobservable parameters does not
directly translate to certainty in the observable data. This is important to
imprint on as many neurons as possible because nearly all of statistics, classi-
cal and modern, states results about certainty or uncertainty in parameters.
You can be as sure of the values of parameters as you like, but this does not
mean that you are as sure of reality.

We will certainly come back to these topics.

4. Back to observables: binomial

The same story of the difference between parameters and observables
repeats itself for the binomial success parameters. Thus, let us say, in the
TSD experiment, that we have enough data so we can confidently say θM ≈

2You should be gasping, particularly if you have ever practiced classical statistics
before.
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pM = 0.7 and θF ≈ pF = 0.8. What is the probability that pM < pF ? Yes,
it is 1, they are certainly different.

Suppose, then, you set out the next day with pM and pF in hand and a
female approaches. What is the probability that she wears a TSD? Is it 100%
because we can say that there is a 100% chance that pM < pF ? Obviously
not! It is 80%.

Now suppose that the next day we will see 10 men and 10 women. Given
our prior observations and EB, what is the probability that more women
than men in that future group of 20 will wear a TSD? Is it 100% because
it is 100% certain that pM < pF ? No! It is (calculations show) only 60%!.
And there is an 18% chance the number of women wearing a TSD will equal
the number of men wearing one, leaving, of course, a 22% chance that more
men than women wear TSDs. We’ll learn how to do these calculations later.

Again, let’s imagine that we have taken no data. What would we guess
the probability of more women than men wearing a TSD to be (given EB) ?
50%. So even if we knew the exact values of the parameters, we only improve
our knowledge to a 60% chance. Not a very large move.

Wait, it’s still worse (in the sense of less sure) than this. We are not
certain that θM < θF , and we have to take into account our uncertainty in
these measures when we consider the observables. Doing that (via calcula-
tions we will learn) says the probability of more women than men has only a
57% chance (there is a 16% chance of an equal number of men and women;
and a 27% chance men outnumber women). Again, just like when we quan-
tified our uncertainty with normal distributions, if we started off knowing
nothing except that we would have two groups and that one of these groups
would be larger than the other, the probability of seeing more women than
men affixed to TSDs would be 50%. The data marginally sharpened this
guess to 57%. Even if we absolutely knew the values of the parameters, the
probability is just 60% that more women than men are hooked to the TSD.
And that is as sure as we can ever be.

5. Homework

(1) Perform the thinking suppression device survey. Use your own real-life
data and measure at least two different groups (men and women, those
over 40 and those under, etc.). Then do the classical z-test (or χ2) test.
What is the approximate probability that one success parameter is less
than the other?

(2) Keep this data at hand. It might become the basis of your book project,
described in the Preface.



CHAPTER 12

Regression Modelling

1. Uncle Ted

Here is a simple picture and a simple formula, both of which, I hope to
God, you remember from high school.

(29) y = a+ bx

y

x

Yes, y = a+ bx is the equation for a straight line, the simplest geometric
figure after the dot. It explains what happens to y when we change x: a is
called the intercept (it is the point, when x = 0, that intercepts the y axis),
and b is the slope. If b > 0 the slope of the line is positive and y increases as x
does. Another way to say that is that y is (linearly, positively) proportional
to x, or y ∝ x, or y is positively “correlated” with x. If b < 0 the slope of
the line is negative and y decreases as x increases, or y is proportional to
−x, or y is negatively correlated with x.

Suppose we have some observable data x and we want it to help us
predict the observable data y. The idea behind statistical regression is to
model the relationship between y and x as some kind of probabilistic straight
line. Sound complicated? It isn’t; in fact, you already know how to do it.

Let’s recall Uncle Ted’s advertising campaign experiment. Two cam-
paigns, A and B, ran for 20 weeks and sales of sausage sandwiches were
tallied. I want you now to take out a piece of paper, a mere scrap will do.
Draw a horizontal line and under it write an A and to the right of that write
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a B. I am not going to do this for you, so get the paper and get to work.
Now, to the left of the horizontal line draw a vertical one, and label it (to
the left) Sales. The horizontal line is your x-axis and your vertical the y-axis.
Place a dot over the spot marked A at the point 421, and another dot over
the B at the point 440. There is no need to be meticulous about this. As
long as the point for B is a little higher than the point for A, then you are
in business. The picture you have drawn is finished. What it says is that,
for campaign A, sales are 421, and for campaign B, sales are 440. Believe it
or not, that is a version of a straight line. Here is the equation for it.

(30) Sales = 421 + 19× I(Campaign B)

The only thing that is new is the bit about I(Campaign B). The I()
is called an indicator function, and it is equal to 1 when its argument is
true, else it is equal to 0. No, no; it’s not difficult. In this case, when we
are considering campaign A, then Sales = 421 + 19 × I(Campaign B) =
421+19×0 = 421 because we are not in Campaign B, therefore the indicator
is 0. But if we are in Campaign B, then Sales = 421+19× I(Campaign B) =
421 + 19× 1 = 440. Simple.

The thing to notice is that the “19” is the difference in sales between
the two campaigns (B minus A). The 421 is still called the “intercept”, out
of habit. If you like, the 19 is a modification of the intercept for campaign
B.

Does equation (30) perfectly represent the data we saw over the 20
weeks? Obviously not. The sales at A were not always exactly 421 and
at B they were not always 421 + 19 = 440. Sometimes sales at A were a
little higher than 421, sometimes a little lower. Draw in some more dots
above A to indicate this: some dots higher than 421 and some lower. Then
do the same for B: some dots higher than 440, some lower. This picture
does realistically represent the sales. Now go back to Chapter 10 and look at
the boxplot we drew (boxplot(Sales∼Campaign)) and compare it to the
one you just sketched. Surprise. The only thing we have to do is to modify
equation (30) so that it represents the fact that the sales were not always
constantly 421 and 440. Here’s how to do it:

(31) Salesi = 421 + 19× I(Campaign Bi) + εi.

Two things have changed. The easy one first: a subscript i has been added to
Sales to indicate the ith data point, where we remember that i = 1, 2, . . . , 40
(20 weeks over two cities; look at the CSV file to convince yourself). The
hard thing is εi, a Greek letter, and what do Greek letters mean? That’s
right, you remembered! It means εi is an unobservable parameter, and that
there is a different one for each data point, which is why it has the subscript
i. It represents the departure of each observation from the point 421 (if we
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are in A; 440 if we are in B)1. This is easy to see. Suppose we are in campaign
A, then Salesi − 421 = εi.

This parameter is a little screwy, in that it is almost observable. If we
knew that the sales in A were always 421 plus some “departure”, then each
εi would be exactly observable, and each would equal Salesi − 421 = εi
(for campaign A; similarly for B). But, we don’t know that the sales in
A are always 421, do we? In Chapter 10, we quantified our uncertainty
in sales using a normal distribution, which had two parameters for each
campaign, e.g. µA and σA. We still don’t know what future sales under the
different campaigns will be, and so we still have to quantify their uncertainty
using a probability distribution. Well, we can suppose that sales under each
campaign are some central value plus or minus some other value that can
change from week to week. Let’s rewrite equation (31) for campaign A with
this in mind:

(32) Salesi = µA + εi,

where µA is the central parameter and εi the unknown plus or minus differ-
ence from that central value. What can we logically say about εi? We don’t
know each value, but we can suppose that we could see just as many positive
values of εi as negative; that is, the departures from the central value for each
observation are equally likely to be greater than 0 or less than 0. Now, be-
cause εi is semi-observable, it turns out we can semi-describe our uncertainty
in it using probability in classical statistics. We have already deduced (or
mandated) that whatever probability distribution we use must be symmet-
ric about 0: points below 0 are equally likely as points above. Well, many
distributions meet this criterion, so we still have to choose among these.
The most popular choice is—can you guess?—the normal distribution. This
means we describe our uncertainty in εi with a normal distribution with (a
deduced) central parameter 0 and a spread parameter as σ2. This means
that Sales (at A) is some number µA plus some number ε, thus our uncer-
tainty in Sales at A is quantified by a normal distribution with parameters
µA and σ2. In other words, it is just as it was in Chapter 10.

What about campaign B? In Chapter 10, we quantified our uncertainty
in future values with a normal distribution with parameters µB and σB.
Let’s rewrite equation (31) for campaign B with this in mind (the indicator
function equals 1):

Salesi = µA + ?× 1 + εi,

where we have to solve for “?” and where we still need to fix it so that when
I(Campaign B) = 0 the equation still works for campaign A. We want, when

1ε is sometimes called random error. What do people mean by error? Do they mean
the sales would have been 421 in every case had not something gone horribly wrong?
Actually, to call it error is to idealize the parameter µA as the Platonic, incorruptible
Sales Of A, which again proves that there is too much attention paid to parameters. In
some cases you are interested in the measurement error of some apparatus, and calling ε
“error” makes sense; else, it is just silly.
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we are in campaign B, the right hand side to equal µB + ε, so what does “?”
equal?

(33) Salesi = µA + (µB − µA) + εi = µB + εi.

We can write (µB − µA) as µB−A. This parameter is still the difference in
central parameters for the two campaigns, just like we did using the classical
t-test in Chapter 10. In other words, we went to all the trouble of re-writing
what we already knew how to do, so that it fit into the framework of what is
called regression. Before we learn how to do this practically on a computer,
let’s learn a little more about regression and see why it’s a more general
framework than the old testing procedures we learned.

2. White blood

We will use the appendicitis data set, so it might help to re-read Chapter
7, and read the data into R to get ready.

One of the variables in that data set is White.Blood.Count, and since we
used an English name for this variable, we might guess it means white blood
count (it does). We have two groups of people, those who have appendicitis
and those who do not: in the data set Appendicitis this is coded as N or
Y. White blood cells are used to fight off infection, so it is guessed that in
patients with appendicitis, which is an infection, white blood count would
be higher than in patients who did not have appendicitis.

Do we know, for future patients with right lower quadrant pain, the
value of their white blood count? We do not, we are uncertain. And how
do we quantify our uncertainty? Using probability. What distribution best
represents our uncertainty in white blood count? Well, it’s not the binomial,
so we’ll go with the normal. Let’s write out our uncertainty in the form of
a regression model

(34) White.Blood.Counti = µN + µY−N × I(Appendicitis = Yi) + εi,

where µN is the central parameter for patients who do not have appendicitis
and µY−N = µY − µN is the difference in central parameters for those with
and without appendicitis. Except for swapping A with N and B with Y, this
equation is no different than the one for sales in difference campaigns. Now
let’s add a twist.

Older people might produce less white blood than younger people, re-
gardless whether they have appendicitis or not. After all, they’re old. Run-
ning the summary(Age) shows we have people as young as 3 and as old as
93 in our dataset. If mostly young people have appendicitis and old people
do not, then it could look like there was a difference in white blood count
because of appendicitis just because the ages were skewed in our dataset.
We want to control for age so that this is not a problem. For shorthand,
write I(Appendicitis = Y) = I(Y). Then the way the model is modified is

(35) White.Blood.Counti = µN + µY−N I(Yi) + βAgei + εi.
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Take your time with this. Suppose that Agei = 0 for some person (yes, it
is impossible). Then µA is the central parameter for a normal distribution
which describes our uncertainty in people who do not have appendicitis and
who are 0 years old. Then µN +µY−N is the same thing but for people with
appendicitis. Now let Agei = 1. Then µA + β is the central parameter for a
normal distribution which describes our uncertainty in people who do not
have appendicitis and who are 1 year old. If Agei = 40, then µA+40β is the
central parameter for a normal distribution which describes our uncertainty
in people who do not have appendicitis and who are 40 years old. Do you see?
In order to express our uncertainty in white blood count we have to specify
two things: (1) whether or not the person has appendicitis, and (2) their
age. If we do not have both of these, we cannot express our uncertainty. You
have to plug these values into the equation, else it is meaningless. Remember
this key point, it is often forgotten.

Because the central parameter is µA + βAge (for people without ap-
pendicitis), we have controlled for age, because we allow the uncertainty in
white blood count to change with age. It changes in a linear fashion, too.
To see that, suppose we look at people without appendicitis

(36) White.Blood.Counti = µN + βAgei + εi.

Doesn’t that remind you of the equation for a straight line? Except for the
ε, it is that equation. Thus, we can say that we have linearly modeled white
blood count, controlling for appendicitis and age.

Suppose we also wanted to control for each patient’s weight? (We don’t
have this variable in the dataset, so we’ll just suppose.) Then

White.Blood.Counti = µN + µY−N I(Yi) + βaAgei + βwWeighti + εi,

where I have modified the subscripts on the “βs” to indicate age and weight.
Incidentally, these Greek letters are also called coefficients (of the regres-
sion line) or just “βs” (the appendicitis indicator, Age, etc. are independent
variables—don’t ask why). I will call the Greek letters either parameters of
coefficients. What does µN mean in this case? Well, set Age and Weight
equal to 0 for people without appendicitis, and µA is the central parameter
of the normal distribution describing our uncertainty in white blood count
for patients who have these characteristics (no appendicitis, age and weight
equal to 0).

Stop! Right now, you should be thinking, “This guy is nuts. I can buy
an age equalling 0 because maybe that means babies less than a year old.
But weight equalling 0? Nonsense!” I agree with you. It is nonsense. What it
means is that these kinds of models, used everywhere, are limited in scope,
and not always applicable (yet they are still used). We’ll talk more about
this later.

What if we further wanted to control for, say, blood pressure? Right,
just add a βsbpSBP for systolic blood pressure and a βdbpDBP for diastolic
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blood pressure. And so on for as many variables as you think need to be
controlled for.

Almost done. Let’s ignore Age and Weight and suppose we instead
wanted to control for Sex, because men and women might naturally (appen-
dicitis or not) have different levels of white blood count. Sex is a categorical
variable, with two levels, M and F (actually, in the database they are spelled
out, but we’ll use the shorthand here). How is this added? Like this:

White.Blood.Counti = µN + µY−N I(Yi) + βsI(Mi) + εi,

where we need the indicator function again, to tell us if the patient is M
or F. What does µN mean now? Well, we have to say whether or not the
person has appendicitis and what sex that person is. We always have to
pick values for the variables we put in the model! Always, always, always!
Pick N and F. Then µN is the central parameter for a normal distribution
which describes our uncertainty in people who do not have appendicitis and
who are female. Technically, it would be better if we wrote it as µNF , but
this notation isn’t usual. What if the patient is a male? Then I(M) = 1
and so µN + βs is the central parameter for a normal distribution which
describes our uncertainty in people who do not have appendicitis and who
are male. If they have appendicitis and are male, then µN +µY−N +βs is the
central parameter for a normal distribution which describes our uncertainty
in people who have appendicitis and who are male. Get it? If not, stay here
until you do.

Almost done (this time I mean it). Ok, ignore sex and add back age,
which we already know how to do. This time, let’s imagine that, indeed,
older age means less white blood, as before, but now imagine that the rate
at which white blood drops off is different for those with appendicitis and
those without. Say that those with appendicitis do naturally have less white
blood when they age, but because they have appendicitis they have more
than older people without appendicitis. This means that we would like one
straight line to indicate the relationship of age and white blood for those
with appendicitis and another line for those without. Here’s how:

White.Blood.Counti = µN + µY−N I(Yi) + µaI(Yi)Agei + βaAgei + εi,

which looks pretty complicated, but do not despair! When confronted with
a beast like this, take it one step at a time. Remember that we always have
to supply a value for each of the variables we put into the model. Let’s
do that and see what we get. Pick a person without appendicitis, so that
I(Yi) = 0 and with age equal to 0. Then all we are left with is µN , which
must be the central parameter for the normal distribution which describes
our uncertainty in white blood count for people without appendicitis and
who are 0 years old.

Let age be 20. Then we have µN +20βa, which, to be verbose, is the cen-
tral parameter for the normal distribution which describes our uncertainty
in white blood count for people without appendicitis and who are 20 years
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old. The βa is the “b” of the regression line, describing the rate of change of
the central parameter with age.

Incidentally, since you might have forgotten, and since all normal distri-
butions have two parameters, the other parameter besides the central is the
spread σ2, which is assumed to be always the same regardless of the values
we pick for the variables, and all levels of those variables. Not always a great
assumption, incidentally, but it will have to be good enough for this book.

Now let the person have appendicitis and an age of 0. All that is left,
after multiplying by Age = 0, is µA +µY−N , which is the central parameter
etc. If you like, µA + µY−N is the “a” of the regression model, a different
intercept for people who have appendicitis. Age can now be 20, what do
we get? (µN + µY−N ) + 20µa + 20βa. That looks a little confusing, so let’s
rewrite the model for people with and without appendicitis.

µN + βaAge

or

(µN + µY−N ) + (µa + βa)Age

where these are written in the form of straight lines. They are, of course, the
central parameters of the normal distribution describing our uncertainty in
white blood count, given the patient has or does not have appendicitis and
for a known age.

That’s it, you have just got a graduate education in writing linear re-
gression models (for a truly graduate education, see Bernardo and Smith,
2000). No kidding (most other courses spend all the time learning how to
calculate various guesses of the βs by hand and so scrimp on understanding
the models actually are). All other regression models are like this. The only
thing that changes is the names of the variables and how many variables
you put on the right hand side.

Never forgot what you are doing, however. You are trying to describe
your uncertainty in an observable (the left hand side) like white blood count.
You do this by assuming that the uncertainty in this observable is quanti-
fied by a normal distribution with spread parameter σ2 and with a central
parameter that depends on specific values of the variables that are on the
right hand side. You are saying you know the values of variables on the right
hand side, or you are assuming that you know. But you obviously do not
know what the value of the observable on the left hand side will be for new
data.

3. Practicals

We want to quantify our uncertainty in white blood count controlling
for appendicitis and age, and we assume that the relationship of white blood
and age is different for those with and without appendicitis. This implies,
as we have seen, the model

White.Blood.Counti = µN + µY−N I(Yi) + µaI(Yi)Agei + βaAgei + εi.
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What is the value of µN? Of βa etc.? You don’t know.
Here is Uncle Ted’s problem again

Salesi = µA + µB−A × I(Campaign Bi) + εi.

What is the value of µN and µB−A? Again, you don’t know, you are not
certain. This means we have to find a way to guess the values of these
parameters, and then quantify our uncertainty in these guesses. And we have
to do this in the classical and modern way, never forgetting that our goal is
to learn something about the observable itself and not just the parameters.

In order to build a linear regression model, you’d like to have the ob-
servable and variables at least look like there is some kind of straight line
relationship between the two, right? So always start with a picture! This is
because of the well known wisdom: never assume. There are at least 1432
ways to plot data in R. Here are two. Assuming you have read Uncle Ted’s
data into R and called it x (see Chapter 7), then then all you have to do is

plot(x)

which will give you the boxplots we have seen before. R is smart enough
to know that if you only have an observable (like Sales) and a categorical
variable (like Campaign), to automatically give you a boxplot. You could
also directly get the boxplot in the way you learned before.

Let’s also read in the appendicitis data and called it d (for, I suppose,
”data”). You can try plot(d), but it’s a busy figure. It is a plot of each
variable in the dataset by each other variable. The way to read these is
simple. In each row, the variable that is named takes the y-axis, and in
each column, the variable that is named takes the x-axis. These “scatter-
plot matrices” are sometimes just the thing, but not in this case because
we have so many categorical variables. For example, the first plot on the
upper left is Belly.Button.Pain by Vomiting. Both of these variables were
coded as 0/1 (no/yes). The plot, then, is just a dot for every possible com-
bination of Belly.Button.Pain and Vomiting seen in the database (which
are 0/0, 0/1, 1/0, 1/1). Not very interesting to look at. The good stuff is
White.Blood.Count by Age or Temperature, etc. To get those separately—
first attach(d)—just ask for them, i.e. plot(Age, White.Blood.Count),
etc. Especially do that one (by Age). Does it look like a straight line could be
run through these data points? (I’d give you the picture in the book, but then
you would be tempted to not produce it yourself, and we can’t have that.)
Not really, but it doesn’t not look like it either. By that I mean, it doesn’t
look like any other kind of line would fit these points. What we can take from
that is Age is probably not that useful in helping describe our uncertainty in
white blood. Also try plot(Appendicitis, White.Blood.Count). A box-
plot, since R realizes Appendicitis is categorical. Looks like higher white
blood counts for people with appendicitis, just as we suspected. (You’re
really going to have to start up R to follow along here. Since this is the
homework, you might as well.)
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We could go on and on and on, producing new and better plots of the
data and do a tremendous job of exploratory analysis, which is one of the
fairest things you can do with data, but the techniques to learn are enormous
in number. The datasets you will play with in this book are also “clean”, by
which I mean they will roughly match linear regression assumptions; that
is, you won’t see any screwy data here, nor learn how to deal with it. All
these things are very important, but this book is about understanding the
results of analyses, which is much more important because most of you will
never or rarely do your own analyses. You will almost certainly, however,
be confronted with the analyses of others, and thus it is crucial that you be
able to comprehend the claims that are made, and how they are typically
overstated or too certain. Sadly, then, we have to leave off here on the critical
topic of exploratory data analysis.

Time to get estimates of the coefficients. We learned how to do this in
Uncle Ted’s case back in Chapter 10 using the t.test function in R. The
more general approach, classically anyway, is the glm function (for “gener-
alized linear model”). This is easy in R:

fit = glm(Sales ∼ Campaign)

where the symbol “∼” in computerese means equals; but since Sales doesn’t
really equal Campaign, this symbol really means, as it did in Chapter 4, “the
uncertainty in Sales is quantified as a (linear) function of (Campaign)”. To
see the results, type

summary(fit)

Store the results of the model in the object fit so you can play with them
easier later. How did I decide upon the name fit to store the results? The
same way you decided on the name of your dog. It just doesn’t matter what
you call it. You’ll get something this:

Call:

glm(formula = Sales ~ Campaign)

Deviance Residuals:

Min 1Q Median 3Q Max

-110.75 -30.25 -13.75 31.75 100.25

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 420.75 10.11 41.604 <2e-16 ***

CampaignB 19.00 14.30 1.328 0.192

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for

gaussian family taken to be 2045.566)

Null deviance: 81342 on 39 degrees of freedom
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Residual deviance: 77732 on 38 degrees of freedom

AIC: 422.4

There’s a lot of detail here, so let’s take our time to get it right. The first is
Call, which merely echoes the same the code you typed to get the results.
The next is Residuals, and you can safely ignore it. You can see that R

calls the µs and βs etc. Coefficients, but it does not print out any Greek
letters. How could it? The Greek letters we used were arbitrary anyway.
Most software, not just R, calls µA, for no good reason in parentheses, the
(Intercept). It is up to you to remember the mathematical formula and
that (Intercept) means µA.

Next up is CampaignB, note especially the B. This is R’s way of telling
you that this is the coefficient for the indicator function where Campaign

takes the value of B. A is, of course, missing (why?). If you ran a third
campaign, C, then you would see an additional line called CampaignC. The
only thing to keep in mind is that R assumes alphabetical order for the
levels of categorical variables, and it sticks the lowest in the (Intercept),
which is why CampaignA = (Intercept). Of course, CampaignB is not µB,
it is µB−A. And if we had a campaign C, then CampaignC would represent
µC−A, and so on.

The value of µ̂A is under the Estimate column, and is equal to 420.75,
just like in Chapter 10. µ̂B−A is 19, again like in Chapter 10. The next two
columns, Std. Error, t value can be ignored (except to note that this is
the same t-statistic as before, now called a t value; we don’t really care
about the exact numerical value of this thing). These two columns’ main
purpose is to help calculate the fourth, Pr(>|t|), which is our old pal, the
p-value. What are p-values? They are the probability of seeing a statistic
as large or larger than the one we got given some “null” hypothesis about
the parameters is true. The statistic is the t value, so what is the “null”
hypothesis? For the second row, it is that µB−A = µB−µA = 0, or µA = µB,
same as it was in Chapter 10.

What about the first row? It is that µA = 0. It is always that the
parameter of that row equals 0! So what does µA = 0 mean? Well, that’s the
central parameter for the normal distribution describing our uncertainty in
Sales under Campaign A. A central parameter of 0 means sales are as likely
to be greater than 0 as they are less than 0. Yes, Sales less than 0. Does this
make any sense? The answer is no. Given that we are talking about Sales,
what is the probability that µA > 0. You’d be tempted to say it is 1, and
you’d be almost right, but we have here a problem first noted in Chapter
4: normal distributions should not be used to quantify uncertainty for real-
life observables. In this case, it is impossible that Sales are less than 0, yet
there is a non-zero probability that they would be if uncertainty in Sales
is quantified by a normal distribution. The situation is already absurd, but
let’s, like everybody else, draw a veil, and silently carry on. Thus, given that
µA = 0, the probability of seeing a t value larger than 41.604 is < 2e− 16
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(of course, given that we run the ad campaigns an infinite number of times).
Fascinating? The answer is again no.

In case you weren’t already enthralled by p-values, R helps you out by
flagging with asterisks (the Signif. codes:) the publishable ones. Ignore
the Dispersion parameter and Deviance lines for now.

On to appendicitis! Here’s how to get our model:

fit = glm(White.Blood.Count ∼ Appendicitis*Age)

where the only thing that is different is the Appendicitis*Age which math-
ematically translates to Appendicitis + Age + Appendicitis × Age. If we did
not want the “interaction” term (Appendicitis × Age), then we would have
put just Appendicitis + Age. The summary, stripped of all the extraneous
matter, gives us

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.588673 0.443045 21.643 < 2e-16

AppendicitisY 4.933527 0.824903 5.981 4.79e-09

Age -0.010289 0.010406 -0.989 0.323

AppendicitisY:Age -0.003703 0.022129 -0.167 0.867

This table looks more complicated, but follows the same rules as the previous
one. The (Intercept) means µN , and µ̂N = 9.6; µY−N is AppendicitisY

(the indicator function) with classical estimate 4.9; βa is Age; and µa is
AppendicitisY:Age. The last column is the classical p-value for the “null”
hypothesis that each of those parameters is equal to 0. The only trick
is to recognize that the interaction term is written AppendicitisY:Age.
Incidentally, you could have written the right hand side of the glm in R

as Appendicitis + Age + Appendicitis:Age instead of Appendicitis *

Age.
One last note about classical regression. To get the classical confidence

interval on each of the estimates, type confint(fit). What do confidence
intervals mean?

4. Modern

In one sense, we are done, because it turns out that the classical confi-
dence intervals can once again be interpreted as modern credible intervals.
This means, after typing confint(fit), we see

2.5 % 97.5 %

(Intercept) 8.72032036 10.45702473

AppendicitisY 3.31674790 6.55030629

Age -0.03068433 0.01010720

AppendicitisY:Age -0.04707424 0.03966906

and so, given the data and EN , there is about a 97.5%-2.5% = 95% chance
that µN is in this interval, and so on for the other intervals. If somebody
(and there unfortunately is always somebody) insisted on having just one
“best” number, then, while reminding them that this is not wise because one
number does not well summarize the uncertainty you have in the parameters,
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nor in any sense actual observables, you would give them the Estimate.
But you should remind them that this is an estimate for an unobservable
parameter which gives only weak knowledge of actual observable data.

A few Chapters back, I promised that we would learn how to visualize the
uncertainty in the parameters, and since honor is important except to those
who wish to get away with something, it’s time to keep that promise. Type
(first noted in Chapter 7) source(url("http://wmbriggs.com/book/Rcode.R"))
to load up the software for this book into R’s memory. Go back and refit
Uncle Ted’s example, then type

glm.posterior(fit)

This will give you the picture of the posterior probability distributions for
µA and µB−A given the old data and EN . It does not give you a picture of
the posterior probability distribution for σ, but do not forget that it exists
and we need to know it when we talk about observables later. You have to
hit “Enter” to get each new picture, which are shown here.
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A dotted vertical line is shown at 0 so you can eyeball how much area is
above and below it. Even better, the probability that each of these posterior
parameters is less than 0 is also given by R; you should see this:

Probability parameter (Intercept) < 0 | x, E_N = 0

Probability parameter CampaignB < 0 | x, E_N = 0.0920139

This says that the posterior probability that µA is 0, but it actually means
“close enough to 0 for anybody”, because recall these parameters are based
on normal distributions, and there is always some probability of being less
than any number, not matter how small (the probability or the number). The
posterior probability that µB−A is less than 0 is 0.09 (round the numbers!),
which means that the probability it is greater than 0 is 1− 0.09 = 0.91.

It is up to you to do this for the appendicitis example. Incidentally, you
can get both pictures of Uncle Ted’s example, or all four pictures of the white
blood example on the same graph in R, you just have to be a little clever.
For the former, type par(mfrow=c(2,1)), which says “create a plot matrix
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with 2 rows and 1 column”; for the white blood type par(mfrow=c(2,2)),
which says “create a plot matrix with 2 rows and 2 columns.” This command
is ugly, unintuitive and unmemorable, but we are stuck with it. Type the
glm.posterior after the par function (which stands for “set a graphics
parameter”).

5. Back to observables

Recall, what you might have forgotten, that we want to quantify our un-
certainty in actual sales or white blood count and not the parameters. This
is why we created the regression model in the first place. In the former ex-
ample, we had probative information in the form of campaigns, in the latter,
the probative information was whether or not each patient had appendicitis
and their age. In order to quantify our uncertainty in the observable we have
to specify values for each of the probative variables. These are the values at
which you are interested in seeing what happens to the uncertainty in the
observable. In the Uncle Ted example, this means specifying a campaign (A
or B). In each case, we can quantify the uncertainty in future sales given
this specified campaign value (and given the information from the old data
and EN ). We can then ask very important questions like “What is the prob-
ability that future sales in campaign A are less than campaign B given the
old data etc.?”

We first need to ask for the probability distribution that quantifies our
uncertainty in the future observable if Campaign = A. To do this in R

s1 = obs.glm(fit,data.frame(Campaign="A"))

We will store the results in s1—for “scenario 1”—which contains infor-
mation on the probability distribution describing our uncertainty in future
sales under campaign A. You have to create the scenarios! Just like you had
to supply a value for each variable on the right hand side of the regression
model. The new function is obs.glm, which tells us it is concerned with
observables from the glm regression model. If you can remember as far back
as Chapter 5, you might recall that R calls datasets data.frames. Well, one
term is as good as the other, I suppose. We have to tell obs.glm what the
future new data will be, so we pass it a new dataset, or data.frame. The
only thing you have to do is to remember to include a value for every pro-
bative variable (all the variables on the right hand side); since this model
only had Campaign, that’s all we have to provide. Spelling and capitalization
counts! Typing Campaign="a" will give you an error because there was only
a Campaign="A" before. Similarly, Typing campaign="A" will give you an
error because there is no variable called campaign with a small c. Now do a
scenario for Campaign B

s2 = obs.glm(fit,data.frame(Campaign="B"))
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The last step is to answer the question and draw a picture (which I’ll show
you only for the appendicitis example), which we do with

obs.glm.prob(s1, s2)

and you should see

Posterior probability that s1 < s2 = 0.616904

The function obs.glm.prob gives you the posterior probability of the differ-
ence between two scenarios, where it is up to you to create the probability
distributions of the scenarios.

Last Section, we learned that, given the old data etc., the probability
of µB−A > 0 = 1 − 0.09 = 0.91 (this means a 91% chance that the central
parameter of sales under B is larger than the central parameter of sales under
A). However, this only translated to a 62% chance that the sales under B
is larger than the sales of A. We are less certain in the observables than in
the parameter! This is how we did that calculation.

Now to the appendicitis example (first re-run the fit = glm(...) for
this example), were we must remember to specify values for both Appendicitis

and Age. Scenario 1 might be

s1 = obs.glm(fit,data.frame(Appendicitis="N", Age=31))

where I picked Age = 31 for no good reason, other than this was the median
observed value of age and thought it would be interesting. Scenario 2 is the
same except for Appendicitis="N". What is the probability that, give the
old data etc., a white blood count from somebody not having appendicitis
will be less than the white blood count from somebody having appendici-
tis? This is had by typing obs.glm.prob(s1, s2) and we see Posterior

probability that s1 < s2 = 0.1531845. If you did the homework as you
were supposed to you would have discovered that the probability, given the
old data etc., of µY−N > 0 was almost 1 (it was about 1− 10−10). But the
probability the observables differ is 85%, which is certainly respectable and,
if you had to bet, perhaps even convincing, but it is not 1. Running the
obs.glm.prob function also gives you this picture
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This shows the probability distributions of the observables under both sce-
narios. As expected, the distribution under scenario 2 gives higher probabil-
ity for large amounts of the observable (white blood count); the distribution
under scenario 1 gives higher probability for smaller amounts of the observ-
able. You can see that scenario 2 even gives, what is perhaps not a negligible
amount of, probability for white blood counts less than 0! This is the prob-
lem using normal distributions I warned you about. This is real data, folks,
and real studies and papers were published with it using just these kinds of
distributions. This happens constantly.

The reason is happens so often—and you’re probably sick to death of
hearing this by now—is that people stop at saying something about the
parameters and do not carry the analysis through to the observables. If
more analysis were to take the extra step to the observables, people would
realize the huge mistakes they are making. Normal distributions are quite
simply overused. Ah well, close enough.

See that point where the two distributions overlap? At a white blood
count of about 12. This is the point at which, if you learned a 31 year-
old patient had a white blood count larger than 12, you would guess he
had appendicitis. If he had a count less than 12, then you would guess no
appendicitis. This is because more probability is allocated to those counts
under both scenarios. Next Chapter, we’ll quantify this decision process
better.

Before we move on, let me answer a question that has probably been
bugging you. Let me create two more scenarios, both of which are for people
who have appendicitis. The first scenario is for people 80 years old; the
second is for those who are 20. What is the probability that, given the old
data etc., 80 year-olds with appendicitis have a lower white blood count
than 20 year-olds? Using the code above (do this!), we discover it is 56%.
For people without appendicitis, it is nearly identical: 55%. Consider, if you
knew nothing about appendicitis or white blood count or age’s effects on
them, and somebody asked you, “Given I grab two people, one 80 and one
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20, what is the probability that the white blood count for the 80 year-old
is less than the 20 year-old’s?” Conditional on that evidence, it is 50%.
Thus, adding the evidence that age and appendicitis are linearly related to
white blood, and the old data (and EN ), the probability they are different
is about 55%. Which is to say, Age is not that important in quantifying
our uncertainty in white blood count. All that new evidence about age only
changed the probability five points. Whether that five points is important
or not depends, of course, on how you use the information, but it is likely
that, in most applications, the difference is trivial. The question that was
bugging you can now be voiced: If Age is not important, why have it in the
model? Why indeed? We’ll have to talk about this later when we learn how
to cheat with these models.

6. Homework

(1) Follow the examples above for Uncle Ted and Appendicitis. Type every
command you see in the book. Make sure you understand what you are
doing.

(2) Now do the same thing for the data you collected in Chapter 8 home-
work. The data the uncertainty of which can be described by a normal
distribution.

(3) Keep this data at hand. It might become the basis of your book project,
described in the Preface.



CHAPTER 13

Logistic Regression & Observables

1. Logistic Regression

When we sat on the corner in Chapter 11 we saw 14 out of 20 men and
12 out of 15 women wear a thinking suppression device1. Let’s write this
data in a new way, one which is easier for the computer to read:

TSD, Sex
1, M
1, M
...
0, F

This is in the form of a CSV file tsd.csv, which you can download at
the book website. Each 1 is a “success” and each 0 a “failure.” In Chapter
11, we handled this kind of data using classical testing, but here we want
to use regression. From what we learned last Chapter, for this situation we
might try a model like this:

TSDi = µF + µM−F I(Sexi) + εi,

where µF represents the central parameter...wait! Didn’t we use binomial,
and not normal, distributions to express our uncertainty in the number of
men and women wearing TSDs? We did. Look at the equation again. The
left hand side must be either a 0 or 1 because TSD can be only 0 or 1,
but it’s hard to imagine values of µF , µM−F , and εi that could make that
happen in this equation. It would too easy for values of TSD to be larger
than 1 or smaller than 0, or some number in between, no matter what µF
etc. are. Something has to change. Either we change the way we write the
equation on the right hand side, or we change the way we write the response
on the left hand side. I won’t leave you in suspense. It’s the latter.

Suppose the probability that TSDi is a success is θi, where the i subscript
allows the probability of success to change due to the changing values of the
variables on the right hand side. This is effectively what we did in Chapter
11, where we had two different probabilities of success, one for men and one
for women. It will be the same here: either θi would equal µF or µF +µM−F
(convince yourself of this first!).

1Obviously, this is historical data; today it would likely be closer to 20 out of 20 and
15 out of 15

133
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This works in this simple case, but, like before, we will want to add
explanatory variables that help us explain TSD successes. Age again might
be one of these variables; so might income. If we are to use variables like
this, the right hand side of the model, as before, must be allowed to take
any possible value (I mean, once the equation is solved by plugging in values
for all the variables). What are all the possible values? All numbers. Which
are numbers going from negative infinity to positive infinity (See Chapter
4). This means we have to transform the left hand side so that it can,
at least theoretically, go from negative to positive infinity, too. Remember
odds? Odds were a one-to-one transformation of probability: you can either
speak of odds or probability and mean the same thing. If the (unknown)
probability of success is θ, then odds = θ/(1− θ). Plug in a θ = 0.99, which
gives odds = 99 (probabilities close to 1 give larger odds, up to infinity for θ
going to 1); θ = 0.1 gives odds = 0.11; θ = 0 gives odds = 0. Well, we’re half
way there. We have transformed the probability of the left hand side so that
it can be any number from 0 to infinity; we still need to do something about
0 to negative infinity, since odds only go from 0 to infinity. The solution is
to take the logarithm of the odds; this works because logs of numbers from
0 to 1 are negative, getting smaller as the number goes towards 0. A lot of
work, but it leads to this model

(37) log

(
θi

1− θi

)
= µF + µM−F I(Sexi),

This is our logistic regression model, and we use it whenever the left hand
side is a 0/1 variable. The right hand side is the same as it was last Chapter.
You need learn no new rules or techniques about how to interpret the coeffi-
cients, except for the change in wording due to the slight modification of the
left hand side, so that now µF is the parameter describing our uncertainty
in the log odds of a success for females. µM−F is still the difference between
females and males in the parameter describing etc.

Since we already know all about how to work with these models, let’s go
straight to the computer! Type this in R (don’t forget to attach the data
first)

fit = glm(TSD ∼ Sex, family=binomial)

This is exactly like the old regression code except for the addition of
family=binomial, which tells R that the response is 0/1, that we want
to model our uncertainty in the observable using a binomial distribution.
Though you didn’t know it, last Chapter you were actually typing family
= gaussian (which means family = normal); you didn’t see it because
that option was the default, but it was always there. What’s next? This:
summary(fit). The output looks just as it did before:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3863 0.6455 2.148 0.0317

SexM -0.5390 0.8092 -0.666 0.5053
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Same classical interpretation as before: µ̂F = 1.39 etc.; the p-value condi-
tional on the “null” hypothesis of µF = 0 is 0.03, etc. The modern details
for the posterior distribution of the parameters are the same as before too:

glm.posterior(fit)

which shows

Probability parameter (Intercept) < 0 | x, E_N = 0.0159

Probability parameter SexM < 0 | x, E_N = 0.7473

where you have to still remember that SexM is the parameter µM−F etc.
Also don’t forget that this is all still in terms of “log odds” of a success,
which makes the coefficients somewhat difficult to interpret.

This leaves us with future observables, which are not “log odds”, but
actual yes/no (or 1/0) observations. First thing to do is to back transform
our model equation so that it at least looks more like our observable and not
something weird like log odds. Get ready for the most difficult math in the
book—you don’t really need to understand how to derive the equation, but
you do need to understand what it means! What we are going to do is to
work with equation (37) by first taking the exponential of both sides. You
will certainly remember from high school that taking the exponential of a
natural logarithm cancels it, i.e. exp(log(x)) = x. This gives us

θi
1− θi

= exp (µF + µM−F I(Sexi))

θi = (1− θi) exp (µF + µM−F I(Sexi))

=
exp (µF + µM−F I(Sexi))

1 + exp (µF + µM−F I(Sexi))

=
1

1 + exp (− (µF + µM−F I(Sexi)))

where in the last step I divided the numerator and denominator by the
quantity exp (µF + µM−F I(Sexi)). We now know what the probability of
success is given we plug in a Sex. We still do not know the exact value of
each θi because we do not know the exact values of the parameters, but
given the old data and EB and via some hidden math not different in spirit
from what we did in Chapter 8, we can calculate our uncertainty in the
parameters and in future values of TSD. The function glm.posterior has
already given us some idea of the parameters.

Now we can ask questions about our future observables through the
creation of scenarios. A good one might be, if tomorrow we saw 10 more
men and women, what is the probability, given the old data etc., that more
women than men will wear a TSD? Or if tomorrow we saw 1 man and
1 woman, what is the probability that she wears a TSD and he doesn’t?
The point is that you have to specify two things in these future scenarios:
whether the people are men or women and how many people there will be.
In regular regression we did not have to specify a future sample size, but
you will remember that the binomial needs to have a sample size in order to
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calculate probabilities. Here is one possible scenario (you still have to create
all scenarios)

s1 = obs.glm(fit,data.frame(Sex="M", n=1))

and we create another with Sex="M" (note that we do not have to tell the
function that we are working with a binomial distribution, it can figure it
out for itself). Then, as in last Chapter, to compare these two scenarios use

obs.glm.prob(s1, s2)

where you should see

Posterior probability that s1 < s2 = 0.241

Posterior probability that s1 > s2 = 0.151

Posterior probability that s1 = s2 = 0.608

This means that the posterior probability that the woman we see wears a
TSD and the man does not is about 24%. The probability that the man
would wears one and the woman does not is 15%, while the probability
they both would or both would not is 61%. With this function we get three
different probabilities for logistic regression models, whereas in the normal
we only saw two, because when we use the binomial there is a substantial
probability that two future observable numbers of successes can be equal.

Recall that when we just ran glm.posterior the posterior probability
that the parameter µM−F = µM−µF < 0 or µM < µF was 0.7473. But we see
here (running obs.glm.prob) that the probability of the future observable
woman wears a TSD when a future observable man does not is just 0.24.
Once again, we are far less certain of the observable than we are of the
parameter.

What if we expected 10 new men and women? Then

Posterior probability that s1 < s2 = 0.572

Posterior probability that s1 > s2 = 0.273

Posterior probability that s1 = s2 = 0.155

The probability that more women than men would wear a TSD is about
57% (compare this to the figure we got in Chapter 11). In the future, if
you expect a lot more men and women (try an n=1000 in the newdata), the
chance that the exact same number of men and women wear a TSD shrinks
(see the homework), and the probability that the women outnumber the
men is about 75%. And that is the highest, given the old data etc., that it
will ever be. Let’s think about this. Suppose you knew nothing about the
past data and somebody said that a large number of men and women would
walk by tomorrow either wearing a TSD or not. This is all you know. Given
that information, what is the probability that the number of women wearing
TSDs would outnumber the men? Right, logically it is 50%. So the effect
of the old data was to increase our certainty (for large future numbers of
observables) in the question to 75%. Is that a big change? Well, that depends
on the application. See the homework for another example.
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Let’s return to the appendicitis example and reveal its true purpose.
Before, we tried to quantify our uncertainty in white blood count given the
patient had appendicitis or not and knowing their age. But the true thing
of interest is whether the patient has appendicitis, which is unknown, even
after the white blood is counted. What we want is to use the white blood
and age to help us explain the presence or absence of appendicitis. The
mathematical model is

(38) log

(
θi

1− θi

)
= β0 + βwWBCi + βaAgei + βwaWBCi ×Agei,

where I have used the shorthand WBC = White.Blood.Count. The coeffi-
cient β0 is the intercept and is not of direct interest (see homework). The
parameter βw describes how the log odds of appendicitis changes for every
unit change in WBC: every increase in WBC by one increases the log odds of
appendicitis by βw. Same thing for βa with respect to Age. The parameter
βwa is a little more complicated; it is the interaction between white blood
count and age. As that interaction increases by 1 unit (the unit is count per
µl-year), the log odds increases by βwa.

Here’s how to get our model:

fit = glm(Appendicitis ∼ White.Blood.Count*Age, family=binomial)

Running glm.posterior(fit) gives
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Pr parameter (Intercept) < 0 | x, E_N = 0.9999

Pr parameter White.Blood.Count < 0 | x, E_N = 0.0003

Pr parameter Age < 0 | x, E_N = 0.9556096

Pr parameter White.Blood.Count:Age < 0 | x, E_N = 0.1304

Here we learn interesting facts like the posterior probability that β0 < 0 is al-
most certain, the posterior probability that βw greater than 0 is 1−0.0003 =
0.9997, which indicates that white blood count has something to say about
appendicitis, and so on for other juicy tidbits about the parameters. The
posterior distributions of the parameters are pictured. These are all hard to
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think about because they all describe what happens to the log odds. So let’s
go to something important, the observables.

Pick two scenarios, both for a patient 31 years old, which is the median
age. Our main interest is the effect of white blood count. Scenario 1 is for peo-
ple with a white blood count of 7, and the other of 13, which are roughly the
first and third quartiles of the data (run a summary(White.Blood.Count)).
We still have to pick a future sample size. Start with n = 1, so for scenario
1 we have

s1=obs.glm(fit,data.frame(White.Blood.Count=7,Age=31,n=1))

and we create another with White.Blood.Count=13. Then

obs.glm.prob(s1, s2)

Posterior probability that s1 < s2 = 0.321

Posterior probability that s1 > s2 = 0.057

Posterior probability that s1 = s2 = 0.621

Suppose two 31-year old people walk into the Emergency room. One has a
white blood count of 13, the other of 7. The output shows that the proba-
bility the person with a white blood count of 13 has appendicitis and the
person with a count of 7 does not is 32% (remember: your results might
differ slightly from this). The probability that both people either both have
or both do not have appendicitis is about 62%. The probability that the
person with a white blood count of 7 has appendicitis and the person with
a count of 13 does not is about 6%. White blood count is important: higher
counts give higher probability of having appendicitis.

Now suppose the future n = 10 (which means 10 new people in each
group: low and high white blood count and aged 31). Run w=obs.glm.prob(s1,s2).
This stores the output in w, which will be a new dataframe with two variables,
s1d and s2d, the probability distributions for the two scenarios (obs.glm.prob
automatically calculates these for you; we’ll use these in a moment). These
two probability distributions show the probability of all possible events from
0 to n, which is n+1 possible events, for both scenarios. Here are the results:

Posterior probability that s1 < s2 = 0.887

Posterior probability that s1 > s2 = 0.037

Posterior probability that s1 = s2 = 0.076

The Posterior probability that s1 < s2 = 0.887 is getting larger. The
proposition “s1 < s2” means that “More people in the s2 group have ap-
pendicitis than in the s1 group.” This proposition, conditional on all the
evidence, shows that there is a 89% chance that more of the 10 people in
the high WBC group will have appendicitis than in the low WBC group.
There is still about a 4% that more people in the low WBC group will have
appendicitis than in the high WBC group. Last, pick a future n = 1000 and
we get

Posterior probability that s1 < s2 = 1

Posterior probability that s1 > s2 = 1e-10

Posterior probability that s1 = s2 = 1e-11
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Figure 1. Probability distributions for scenario 1 (low
WBC group) and scenario 2 (high WBC group) for four dif-
ferent future sample sizes. When n ≥ 100, the software auto-
matically switches from the discrete labels to lines to make
the plot easier to read.

This means, in 2000 new people (1000 per white blood count group), that
more people with white blood counts of 13 have appendicitis than the people
with counts of 7 is near 100%. The probability that both groups of people
either have or do not have appendicitis is now very small, almost 0% (why
can’t it be eactly 0%?). The probability that the people with white blood
counts of 7 have appendicitis and those with 13 do not is also about 0%.
Increasing the future n changes these numbers very little.

We can learn more about what is going on by examining the pictures
produced by obs.glm.prob (Fig. 1), which shows the posterior probability
distributions for both scenarios for four different future sample sizes, n =
1, 10, 100, 1000 (we didn’t show n = 100 above, but it’s produced in exactly
the same way). Don’t forget this shows the probability of there being k
successes out of n, for k = 0, 1, . . . , n.
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Suppose n = 1, and pick a WBC group, high or low. What is everything that
can happen for that group? Right, either the person has appendicitis or they
do not. From the picture, it looks like the low WBC person has about a 10%
chance of having appendicitis, while the high WBC person has just under a
40% chance. The probabilities spit out by obs.glm.prob merely summarize
this picture. Now let’s increase the number of people to n = 10 per group.
The probability distribution of everything that can happen is pictured on
the upper right panel of Fig. 1. We can start to see the divergence of the
probabilities, but there is still a lot of overlap. For example, the probability
that just 2 out of 10 people have appendicitis is about the same regardless
if the people have high or low WBCs.

By the time we get to n = 100, we can see that there is a clear difference
between the two distributions: most probability for scenario 1 is for low
numbers of people with appendicitis, while scenario 2 gives most probability
to a little less than half the group having appendicitis.

You will have noticed that obs.glm.prob also gives more information
than we have so far discussed. It also shows you the most likely value for
each scenario, plus the probability of future observables being greater than
the most likely value for scenario 1. Sometimes these numbers are helpful
diagnostics. In the two scenarios with n = 1000 31-year olds, but with
low and high WBCs, the most likely number of patients out of 1000 with
appendicitis is 84 for the low group and 347 for the high. There is about a
57% chance of 84 or more patients having appendicitis in the low group, and
a 52% chance of 347 or more patients with appendicitis in the high group.

Finally, let’s change the scenarios, one for a white blood count of 4 and
one of 25—both are near the ends of the observed white blood counts—for
n = 1 new people. Then we get this result:

Posterior probability that s1 < s2 = 0.903

Posterior probability that s1 > s2 = 0.002

Posterior probability that s1 = s2 = 0.094

This means there is a 90% chance that the person with really high WBC
has appendicitis and the person with the really low does not. There is still
about a 9% that either both people have or do not have appendicitis (you
can look at the picture of this on your own). With these levels of WBCs, by
the time we get to n = 10, there is nearly 100% chance that more people with
really high WBC have appendicitis and those with really low do not. These
analyses clearly show that WBC is important in predicting appendicitis. It
is not perfectly predictive—in the n = 1000 people who WBC = 13, only
roughly 400 people will have appendicitis—but we certainly need to examine
it when diagnosing a patient.

OK, let’s try two new scenarios, both with the median observed white
blood count (9.5), but with ages 48 and 22 (about the 3rd and 1st quartiles
of the old data), and with n = 1000.

Posterior probability that s1 < s2 = 0.960

Posterior probability that s1 > s2 = 0.038
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Figure 2. Probability distributions for scenario 1 (Age =
48) and scenario 2 (Age = 22) both with WBC = 9.5 a future
sample size of n = 1000.

Posterior probability that s1 = s2 = 0.002

There is 96% chance the more younger people will have appendicitis (at this
level of WBC). Age therefore seems to be important. Figure 2 backs this up
to some extent: we expect around 200 or so out of the 1000 young people to
have appendicitis and we also expect about 120 or so out of the 1000 older
people to have appendicitis. This is a difference, but not nearly as dramatic
as for WBC. Thus, Age seems less important to explain our uncertainty in
appendicitis. You should also look at scenarios with low age and high white
blood count versus high age and low white blood count, and so on.

By now you’re likely thinking something like this: “Briggs, this is too
much! You are being a nuisance. I don’t understand why we need all this ‘sce-
nario’ nonsense. Why can’t you just give me a simple way to decide whether
or not variables like white blood count are important or not? Classical sta-
tistics did this for me, at least, by saying that if the p-value was low, then
I could write a paper saying that I had proved high white blood counts are
indicative of appendicitis. All this modern stuff is just too confusing. I want
relief!” To which I reply, sorry, pal. I have no comfort to offer. Understand-
ing uncertainty and selecting the best models is hard work and there are
rarely easy answers, and when easy answers are offered, they are usually too
certain. We are asking complicated questions and the we must expect that
the answers are just as complicated (e.g. Wasserman, 2000; West, 1986).

It is true, however, that classical statistics was designed to do the think-
ing for you. P-value less than 0.05? Success! P-value greater than 0.05?
Success, too; at least we could say “no effect.” Either way, you’d be done.
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The decision was out of your hands. It was objective! That was a benefit of
focusing solely on parameters, a focus which unfortunately is echoed in most
Bayesian statistical methods. Parameters are lone creatures and it is easy
to say with what probability one is smaller or larger than 0 and therefore
“significant.” How gratifying!

But let us not be complacent. The new methods we have just learned
(for binomial and normal distributions), while they certainly give a clearer
picture of the uncertainty than the old ways, are not panaceas. For example,
the best question to ask about future data is not always “What is the proba-
bility s2 > s1?” (This is why we also show the full pictures of the probability
distributions.) It may well be that this probability is greater than 50%, but
that it still does not make sense to opt for acting like scenario 2 will happen.
For example, acting like this scenario might happen might cost us a lot of
money, more than we’re willing to pay. This brings up the topic of decision
analysis, a subject whose details unfortunately take us beyond this book.

So far we have ignored one of the most important provisos. The state-
ments we make, like “The probability that more people, out of the next
10 in each group, who have high WBC will have appendicitis is 89%” is
conditional on evidence like the past data and the uncertainty in it can be
quantified with a binomial, but that statement is also conditional on the
new people “looking like” the old people. That old data was collected on a
group of people who had a list of certain characteristics, taken at a certain
place and time. Are future people, the people we are making predictions
about, just like the old people? Probably not in every way. This means that
that 89% is too certain, and should, through a mathematical adjustment,
actually be closer to 50%. We’ll talk more about this in Chapter 15, where
you might be surprised to learn that we often (or nearly always) cannot
formally calculate this adjustment, and is yet another example of why too
many people are too certain about too many things.

We have seen time and again that certainty, even absolute certainty, in
the parameters does not translate into the same level of certainty in the
observables. You can be as sure as you like about the value of a certain
parameter, but it does not mean that it makes a meaningful difference in
the observable. In this way, classical statistics, but also much of Bayesian
statistics, gives one a inflated sense of surety. People come away from an
analysis too confident. Instead, the modern approach forces you to focus
on reality, which is never as simple as you would like it to be. Even after
we have our model in hand, we are full of uncertainty. But that is as it
should be, because that is the way it is. Still, it would be desirable to have
some mechanism with which to judge the overall efficacy of our model. That
mechanism is called skill.



2. ALL MODELS ARE NOT WRONG 143

2. All models are not wrong

The statements of uncertainty we made above were based on probability
models. Were these the right or wrong models? There is a saying often heard
in statistics, attributed to George Box, which goes “All models are wrong,
but some are useful.” That beloved statement is false. Box actually said,
“Remember that all models are wrong; the practical question is how wrong
do they have to be to not be useful.” That statement, with its richer and
more complicated language, is just as false.

The odd thing is that word wrong. What do people mean when they
say a model is “wrong”? When a patient is disgorged from the ambulance
(complaining of right lower quadrant pain) we do not know whether or not
he has appendicitis. We can certainly guess. Let’s do so. If I guess right
for the first patient then whatever “model” I used to create the guess is
right and not wrong. Suppose I guess correctly a second time. My model is
still right and not wrong. In plain English, my model has been right. If a
statistician insisted that it was “wrong”, he would be using that word in a
way that does not make sense.

Would Box say that my model is “wrong”? He would, because he would
suspect that I couldn’t keep my batting average up. Box would argue, rightly,
that future values of appendicitis are contingent, their value is conditional on
the universe being in a certain way, and that the probability of all contingent
events is between 0 and 1. The future values are contingent conditional on
the information that people who complain of right lower quadrant pain have
appendicitis or not, and by whatever past observations we have. So if by
“wrong” Box means that it is impossible to correctly guess every future
value of appendicitis conditional only on our past data, then it is strictly
true that every model is wrong, because our model would spit out nothing
but probabilities which would never equal 0 or 1. But this is a trivial truth
because its says that “all models are wrong” is equivalent to “observables
are contingent.” This is, or should be, no surprise to statisticians whose
livelihoods depend on creating probability models for observables.

How about our old friend, E = “Toss a die of six sides, just one of
which is labelled 6” therefore A = “We see a 6.” The proposition P = “The
probability of A given E is 1/6” is true. That is, the probability of P given
any tautology is 1. Our model here is P, and it is true, which is to say it is
not wrong. There are, of course, many more examples like this. For example,
suppose the proposition we made about people with high WBCs was labelled
A (for ease of notation), then let

M = “ Pr(A|Old data, T, EB) = 0.89”

The probability, given any tautology T, that M is true is 1. That is, the state-
ments we make conditional on assuming a model is true are true themselves.
This does not say that we have chosen wisely with EB. That is,

0 < Pr(A&EB|Old data, T) < 1



144 13. LOGISTIC REGRESSION & OBSERVABLES

It is not true that “A and (the model) EB” is true, because that model was
not deduced; the choice of EB is contingent (or rather, the premises that
lead to EB are themselves contingent; this is so even if Pr(A—EB) = 1; but
we are starting to go too far).

The revelation that we cannot guess perfectly contingent values every
time almost makes Box’s original statement true. It seems that all models are
wrong in this sense. What about my correct guesses of the first two patients?
My model for those two was not wrong. Are you ready for a big secret? It
is always possible to find a model that fits past data perfectly. Even worse,
it is always possible to find an infinite number of models that fit past data
perfectly. It is even trivial exercise to find such models (I talk about this in
Chapter 14). These models, since they fit the past observed data perfectly,
are not wrong in the ordinary English sense of the word since; after all,
they have no error. There is always a suspicion that these models are not
really perfect because of our doubt that they perfectly predict observables
that are not yet seen. It is believed that future data is contingent, and thus
whatever model we have cannot keep up its performance. If the future data
is contingent, and we will use our model built from old data to predict it,
then the model must be wrong in the strict sense that it cannot always
predict perfectly.

Very well. This much is true, but it isn’t really what classical statisticians
had in mind when they said a model was “wrong.” Box is implying something
about vague “randomness”, which carries a lot of mystical baggage (you can
often read statements, for example, of data being normal). In fact, we now
know that the only reason we use a probability distribution is to quantify
our uncertainty in observables. Statements made conditional on our old data
and model plus something like EN or EB are true statements. They are
probabilities (strictly between 0 and 1) that a particular observable will
equal a certain value, but these probabilities are not wrong. It is the case that
two different models (for the same old and future data) may be of different
utility, however, but neither one, conditional on the old data etc., is wrong.
One model might be more useful than another. Usefulness is measured by
skill.

3. Skill

Here are two models that quantify the uncertainty in white blood count

M1 : WBCi = µN + µY−N I(Yi) + βaAgei + εi.

M2 : WBCi = β0 + εi.

M1 we met before, where, you will recall, µN is the central parameter of a
normal distribution describing our uncertainty in WBC for people without
appendicitis and who are 0 years old, etc. M2 we also met, but you might
not remember it because here it is wearing a different set of clothes. To re-
acquaint yourself, ponder the role of β0. It is a central parameter for a normal
distribution; the spread parameter is still hiding in ε. What variables do we
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have to plug in? Well, what variables are on the right hand side? None. This
means that β0 is the central parameter of a normal distribution describing
our uncertainty in WBC for people. Which people? All of them—with the
huge proviso, ever present in any dataset, those people that are like the people
we measured (we skip over this proviso until Chapter 14). In other words,
M2 means simply that we are quantifying our uncertainty in WBC using a
normal distribution, not conditional on any other variable. M1, in a sense,
is many different distributions, one for each possible combination of values
of the variables on the right hand side.

M2 is a sort of minimal or “null model”, in the sense that all it does
is to quantify our uncertainty in WBC unconditional on everything except
knowledge that WBC is contingent. Consider you are in the emergency de-
partment when a patient is wheeled in complaining of right lower quadrant
pain. What is his white blood count? You don’t know, you are not certain.
And how do you quantify your uncertainty? Using probability, and the dis-
tribution you use is the normal (if you are normal). All that is another way
of saying you use M2. Or if you knew their age and if they had appendicitis,
you could use M1; but you might still use M2 and it might be better in the
sense that it better quantifies your uncertainty in WBC.

What do we mean by better? Well, let’s take the third patient in the
database (d[3,]). That person is 80 and has appendicitis. If M1 is scenario
1 and M2 scenario 2, then we can picture our uncertainty in this patient’s
white blood assuming all we knew was his age and appendicitis status using
the same methods as before. We get this picture
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A vertical line is drawn at this gentleman’s actual white blood count. You
can see that scenario/model 1 gives more of its probability to white blood
counts near the actual value. In this sense, M1 is better than M2. Now,
for every patient in the database, regardless of their age and appendicitis
status, we will get the same picture for M2 every time: this is the distribution
quantifying uncertainty in WBC (given the old data etc.). M1 is better than
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M2 if it shifts and narrows more of its probability towards the actual value
of white blood count for every patient.

All we need now is a measure of the “amount” of probability each model
puts near each observation, which is another way of saying that we measure
the distance the probability distribution was away from the actual white
blood count. The smaller this measure is the better. For example, if your
model said the probability of appendicitis was 0 but the patient turned out
to have the disease, your model was as far from the truth as could be. If
my model said the probability was 0.5, then I would be much closer, and
so on. We can compare this closeness across all the data we have and see
which model put more probability near the eventual white blood counts.
This measure is called a score. If score1 < score2, then we can say that M1

is better than M2. Usually, the two scores are put together in such a way
that they are “normalized”, which makes for easier comparison with other
models. Doing this creates a skill score (Murphy and Winkler, 1987; Briggs
and Ruppert, 2005; Briggs and Zaretzki, 2008)

(39) skill score =
score2 − score1

score2
= 1− score1

score2
.

It’s written this way because it’s expected that score2 > score1 (after all M2

is not a very sophisticated model). M1 has skill with respect to M2 if the
skill score is greater than 0 (to a maximum of 1). If the skill score is less
than 0, then M2 is better than M1 .

Why pick M2? Because it is a minimal model, a “null” model. Any
other model we use will be conditional on more information than just the
old white blood counts, so any other model should be able to beat M1 if this
additional information is truly probative. Skill with respect to M2 represents
an absolute minimum criterion that must be met if the model (M1) is to be
of any use. Beyond this, it is often useful to compare the skill of models that
have just one additional variable, say M2 with an M3 which is the same as
M2 but without controlling for age. An example of this in a moment.

That’s all there is to skill scores. The exact score used is called the rank
probability score Gneiting and Raftery (2007), and its math is beyond this
book. The score has some very nice properties and is often used. However,
other scores are possible, particularly those built for user-specific purposes.
For example, it might be that being “far off” (in terms of probability) when
the white blood is low does not mean anything, and it is far more important
to be close when white blood count is high (Briggs and Ruppert, 2005; Briggs
and Zaretzki, 2008). In cases like this, custom scores can be built and used.
This, as mentioned many Chapters ago, is part of decision analysis. We
won’t be doing anything that complex here.

Here’s how to get the scores and skill score. First fit two models; you
already know how to fit M1. M2 is got by

fit2 = glm(White.Blood.Count ∼ 1)
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where instead of any variables, a 1 is placed (this tells R that you only want
β0). To get the skill (assuming you stored M1 in fit1), type

skill(fit1, fit2).

Doing this gives a skill score of 0.13, which is certainly greater than 0 and
indicates M1 is better than M2. This is not surprising given the exploratory
analysis we did in Chapter 12. Incidentally, this code takes some time to
run as it has to loop over every observation in the old data and perform
computations on it. So do not worry if it takes a while; all is well.

Replace M2 with a model that contains just Appendicitis; i.e., no age.
M1 stays the same, i.e. with age. If M1 has skill with respect to M2, then
this tells us that age is adding something useful in our knowledge of white
blood count. Doing this (and you will do this in the homework) gives a skill
of 0.0022, so age does help us predict white blood count, but it is a trivial
amount. Dropping age from our model will do no harm and make the model
easier to compute and work with.

Skill works the same way for logistic regression. Let M2 be

fit2 = glm(Appendicitis ∼ 1, family=binomial)

and M1 be the full model with White.Blood.Count and Age. Running skill

gives a skill score of 0.19, so M1 is better than M2. Again, let M2 be the
same model without age; M1 stays the same. The skill score is -0.0083, which
is of course less than 0 and which indicates M2 is better than M1. Adding
age actually harms the model; you might say it is adding unnecessary infor-
mation which adds to our uncertainty instead of decreases it. Incidentally,
the classical p-value on (the coefficient of) Age is publishable; i.e., it equals
0.03, which means that, classically, people would have (wrongly) announced
that age plays a “statistically significant” role in predicting appendicitis.

The classical estimate for the age coefficients is β̂a = −0.02 which implies
increasing age decreases the probability of appendicitis. The modern poste-
rior distribution of the coefficient of age even says that the probability that
βa < 0 is 0.98. The skill score, which is a function of the actual observables
and the predictions of those observables, tells us that age does nothing at
best, and even adds to our uncertainty at worst; it says we should not con-
sider age. But if all you thought about were the unobservable parameters
(coefficients), then you would have believed the exact opposite of what was
true.

Before we wrap up, suppose all we know is the score for M1. It is, say,
24.2. What does it mean? Nothing. Isolated scores without reference to some-
thing are meaningless, this is why we have to take a skill score and not just
examine the score. We can only know how one model has done with respect
to another (on the same data and evidence). We could take as a reference a

2Because of the way skill is computed, your value might be slightly different than
this, or even be slightly negative. This behavior is normal and is another reason to round.

3Your value may again be slightly different.
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hypothetical perfect model, which is the one that guesses the exact values
of white blood count every time (in advance, of course). The score2 for that
model would be 0, which means the skill score is undefined (dividing by
0 is naughty in math). Perfect models are not possible anyway, since the
values of observables like white blood count are contingent, their value is
conditional on the universe being in a certain way, and therefore (in ad-
vance) predicting it must be done using probability which guarantees that
the score for any model is (strictly) greater than 0 (and so the skill score
will always be defined).

Incidentally, the skill or skill score you calculate for the data set at hand
is, and I hope this doesn’t sound silly, applies to the data at hand. This
means we cannot be certain that the skill of any one model over another
would continue in the same way for future data. We can, of course, quantify
our uncertainty in the skill score and ask what the is the probability that
future skill scores are greater than 0 (for example). In other words, we have
to treat skill like any other observable piece of data. But that is a story for
another day (or another book).

Classical statistics does something different. It picks a best estimate for
the parameters (the µ̂N s etc.), and then plugs in the values of the variables
to make a guess of each white blood count. Not a probability guess, but a

ŴBC, a guess which says, “Yes, the future white count will be ŴBC.” It

then computes measures like R2, which compares ŴBC with the old data

(something like the sum of (WBCi − ŴBCi)
2), and the AIC found in the

output of summary(fit). Since these methods to do not take into account
the uncertainty in the predictions, I don’t discuss them further.

4. Homework

(1) In the TSD example, I claimed that as the number of future observables
increased, it would be increasingly unlikely that the exact same number
of men and women would wear a TSD. Why is this true? hint: Use
exaggeration to solve this.

(2) In the TSD example, in the old data, what is the probability that the
number of women who wore a TSD outnumbered the number of men?

(3) Suppose the TSD example were instead the result of a clinical trial, where
instead of men and women, we had two different treatments, M and F
(which might stand for two drug names). Which treatment—and why–
would you recommend? What if drug F costs four times as much as M,
which treatment would you recommend then?

(4) In the appendicitis example, why isn’t the parameter β0 of interest?
(5) How is the “null” model used to compute skill different than the “null”

hypothesis of classical statistics.
(6) Compute the skill of the white blood count model with and without age.

Does putting age and appendicitis status as an interaction (Appendicitis*Age)
add any useful probative information on white blood count?

(7) This is where the data you have been saving is finally used. The goal
is to build a regression model to explain an observable in which you
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have an interest. Start with exploratory data analysis, then build models.
Do the complete classical and Bayesian parameter analysis. Then do the
real analysis: quantify uncertainty in future observables. Compute several
different scenarios for the two data sets you collected and compute their
probabilities. Investigate interesting questions about the data! Find the
skill of your model against the standard null model on the two sets of
data you collected. This is your final class project, so do a good job!





CHAPTER 14

Cheating

This Chapter is in the spirit of and is dedicated to Darrell Huff who, in
1954, published How to Lie With Statistics, a wonderful book that guided
generations of statistical cheaters. That book is still in print. Most of an
issue of Statistical Science (Steele, 2005) in 2005 contained homages from
well-known authors on how to lie in areas which Huff had not touched on.
I try not to cover the same ground as Huff or the Stat. Sci. authors and
have angled my tips especially for those who use statistics in their academic
papers, or want to discover how others might have cheated in theirs.

1. Statistics on the loose

Here is a case study to show you how easy it is to cheat with statistics.
This kind of cheating is common in advertisements (some more are listed on
the book website; see also the homework).

I saw a commercial for Glad ForceFlex trash bags1, in which they said,
in bold, animated letters, that “7 out of 10 consumers2 preferred” ForceFlex
(then in small small print) “over the other leading brand.” So what is the
probability that a “consumer” would prefer a Glad bag? You’ll be forgiven
if you said 0.7. That is exactly what the advertiser wants you to think. But
it is wrong, wrong, wrong. Why? Let’s parse the phrase they used and see
how you can learn to cheat from it.

The first notable comment is “over the other leading brand.” This heavily
implies, but of course does not absolutely prove, that Glad commissioned
a market research firm to survey “consumers” about what trash bag they
preferred. The best way to do this is to ask people, “What trash bag do you
prefer?” But evidently, this is not what happened. Here, the “consumer”
was given a choice, “Would you rather have Glad? Or this other particular
brand?” Here, we have no idea what that brand was, nor what was meant
by “leading brand.” Do you suppose it’s possible that the advertiser gave
in to temptation and chose, for his comparison bag, an inferior one? One
that, in his opinion, is obviously substandard to Glad (but maybe cheaper)?
It certainly is possible. So we already suspect that the 0.7 guess is off. But
we’re not finished yet.

1Viewed on Channel 11, WPIX, 19 July 2007, at 6:56 pm.
2This is one of the most idiotic terms invented by businessmen. “Hey, I just saw a

consumer walking down the street!”
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In tiny type at the bottom of the screen, we find these words: “Versus
the other leading brand’s Tall Kitchen Drawstring trash bag” and “Among
those with a preference.” So now we know that the “other leading brand”
was not just some other bag, but a very specifically chosen one, just as we
suspected. But how about that other bit? The phrase “Among those with a
preference” should have your system announce Red Alert! Because it tells us
that there were some people who just didn’t give a damn about trash bags,
or, at least, the two trash bags presented to them. How many people? We
have no idea. But we might suspect it’s a lot. Which means that the original
guess of 0.7 for the implied, but false, question “What proportion of people
prefer Glad”, is way off, and certainly far too large.

The commercial had wanted you to believe that the background premise
was E = “7 out of 10 people prefer ForceFlex” therefore there would be a
70% chance that you would prefer the bag. Closer inspection showed that the
evidence E was very different, such that that we can’t adequately identify
the exact premises. Lesson 1 in how to cheat is obvious: conceal contrary
evidence in small print, or somehow obfuscate it.

Incidentally, it is also reasonable to infer that the real evidence is such
that the probability you would prefer a bag is less than 0.7 based on the
premise that if the advertiser did have better evidence in his favor, he cer-
tainly would have used it. He did not, ergo, etc.

The moral of the story is: always be suspicious of other people’s statistics,
especially when somebody is trying to sell you something.

2. Who are the results valid for?

Remember, as always, the job of probability and statistics is to say
something about data not yet seen. In this section, we’ll primarily think
about the human data. What I have to say applies to physical measurements,
too, but it’s far easier to cheat with humans. The type I have in mind here
are those experiments coming from universities. These are many in number
and variety, so we’ll only use a couple of common types to illustrate the
methods.

One typical type of academic study is one, say, that gathers two groups of
college kids (they are always at hand), maybe about 40 in each set, and has
them do some task or asks them to rate something. Another common type of
study, a poll or survey, gathers data from a small area, say a neighborhood
in a city, where the sample size may be as high as a few hundred, and
asks sociological and economic questions of the people that live there. A
medical experiment might try two treatments in two groups of a hundred
or so people. When the data from any of these studies are in, the results
are compiled and papers are published. Certain claims are made in these
papers, usually about favored theories. The college kids paper will say that
people act one way and not another; the city-survey paper will say that
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poor people have less money; and the medical paper will claim treatment A
is better than treatment B.

We already know that if all these researchers wanted to do was to say
something about their datasets—just the people they measured and no
others—then they do not probability models. They can look at their data
and say for example, yes, more people got better under treatment A than
under treatment B. They would be finished. Evidently, however, the creators
of these studies do not want to make statements only about past data; they
want to imply their findings are more widely applicable.

As said, all these kinds of studies concern humans. As of this writing,
there are over 6.6 billion humans alive, about 100 billion are dead, and God
only knows how many more are yet to live. The first way to cheat is to
not mention these facts in your results (unless, of course, you happen to be
writing about demography), it will weaken your argument. If you do mention
them, your sample size will seem paltry and insignificant.

Are the results from the college kids study applicable to all humans? All
those that lived in the past, those that will live in the future, even those that
live now but not in the town in which the college lies? Those who are in their
50s?, 80s? who are less than 10? Poorer people and those with enough money
to “get a degree3”? Kids at other universities? Let’s be clear: researchers will
gather data on their 100 kids, create a probability model, and since they have
read this book, they will not just make a statement about the parameters,
but calculate the probability distribution of future observables. The only
problem is, to what people do we apply this probability distribution?

Before we answer that, let’s think about the medical trial, which was
conducted at a hospital in a city on the East Coast of the United States of
America. The physicians used their data to create a probability distribution
of future patients. But who exactly are these patients? People who live in
other cities on the east coast?, anywhere in the usa? Canada, too? Or only
cities of a certain size? Or do the future patients merely have to “look like”
the patients in the old data; that is, be of the same ages, sex ratio, weights,
economic condition, have eaten the same things in their lifetimes, traveled
to the same places, engaged in the same activities, and so on? Would it have
applied to the people who used to be alive, and to people not yet born,
indefinitely into the future?

Nobody knows the answers to these questions, which is highly in your
favor if you want to publish a study like these. You certainly want to imply
that your results are as broadly applicable as possible because this makes
you more of an expert than somebody who merely claims to know the habits
of a small group of college kids in the year 2008 in a small college town and
kids who are unmarried, between 19 and 22 years old, and whose parents are
upper middle class, etc. Openly stressing these limitations might be noble

3Kids go to college to “get a degree” nowadays, and not usually for anything else.
Well, maybe socialization. These are rational choices given the way things are.
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and correct, but it will not get you far. State, or at least broadly hint, that
your results are in terms of all people. For example, say “People fail to think
correctly when presented with our experiment, which gives weight to our
theory of psychology.” Do not say, “College kids in our freshman psychology
class, who might not be anything like the rest of the population, carried out
an experiment for us—and surely they took this task seriously—and...”

In short, be loose describing the nature of your sample; or, rather, say as
much about your sample as you like, but say little or nothing about whom
you expect your results are applicable. Certainly imply that all humanity
falls under your results, especially if you are working in any non-physical
area. With any luck, a reporter will find your paper and help you along this
road by summarizing your results, leaving out all hint of limitation with a
headline like “Kumquats reduce risk of toenail cancer.”

We’ll talk more about this subject—about to whom statistical results
pertain—next Chapter.

3. Randomization

In classical statistics, all data, before it can be analyzed, must possess
the mysterious quality of randomness. This is in reinforced by the mistake
of calling data, say, “normal”, as in “WBC is normal”, when what really
should be said is that “our knowledge of WBC is quantified by a normal
distribution”. A lot more words, but a lot more correct and surely less apt to
be misleading. Anyway, data does not have to come “randomized”, because
that word only means unknown. Of course we do not know the values of data
before we know them! Modern statistics takes data as they come, whether
in a planned controlled study or where the data is at hand, an observational
study. This is not to say that we should ignore any data’s provenance. How
the data was created and where it came from obviously becomes part of our
background evidence and therefore must influence the probability statements
we make about future data. Data gathered under suspicious or irregular
circumstances should rightly not be fully trusted.

Common knowledge says that non-randomized trials aren’t as trustwor-
thy as randomized ones. For example, in a medical trial, a (computerized)
coin is flipped as a patient walks in the door; if it is heads, he gets treatment
A, else B. But what does randomized mean?

Data need to be “random”4 to justify use of the classical theory, specif-
ically in “randomized” trials. In those experiments, what we want is some
mechanism to invoke that takes the decision out of human hands about how
to allocate the groups in which we collect the data (like a medical trials
with different treatment groups). For example, a set of “sealed envelopes”

4Does the piece of data itself contain this “randomness”? Do some pieces have more
“randomness” than others? Can we extract it, put in a jar so to speak? Jaynes calls the
old belief in randomness a “mind projection fallacy”
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containing “random” numbers generated by a computer says which patient
goes to which group.

You must understand that computerized coin flips, even the results from
real coin flips, are not “random”. The output from a “random number gen-
erator” on a computer is nothing but a deterministic sequence of numbers: if
you know the starting point, you know (I mean know) every number in order
the computer will show you. A real coin flip is constrained by the same laws
of motion that were responsible for dropping the apple on Newton’s head.
If we knew the initial conditions of the flip (weight, air viscosity, amount of
spin), we could predict exactly what the result would be (Jaynes, 2003).5

These events—computerized numbers, actual coin flips—appear “random”
because we turn a blind eye to the initial conditions and to the equations
that govern the outcome. We want the outcomes to be unpredictable—they
are not unpredictable, we just act as if they are. These acts work as “ran-
domizers” because, even if we turned our attention to the initial conditions
and equations of motion, we would never have enough time to solve them
before the outcome is realized.

Here is the real reason for “randomized” trials. It is solely because you
cannot trust human beings that “random” trials are necessary. People will
lie to others and to themselves, they will cheat when able, they will ma-
neuver, shade, and finagle, they will engage in intrigue, they will contrive
and conspire, they will duck, dodge, and double-deal; in short, they will use
every method under the sun to “help” the results work out the way they
want them to, even if they don’t think they’re doing it on purpose. In an
medical trial, for example, we want to take the decision of who gets what
treatment out of the hands of the human, and put on to a physical device
that is not easily manipulated. The reason nobody trusts the results of a
study, say, touted by a homeopath is not just because his method of treat-
ment is ludicrous, it is because he has not conducted a “randomized” trial.
That is, nobody will believe that he did not pick and choose this patients
so that he could get the results he wanted.

Nobody will trust real doctors or researchers either when they report
results from an “observational” or non “randomized” study, not because
these doctors would always purposely lie to us, but they might lie to them-
selves. They might have picked data that confirmed their suspicions and
not sought out data that was contrary to them. Out of sheer humanity, a
physician might have let a sicker patient receive the new drug rather than
the control drug, and so bias the results. Or a caring researcher might seek
out data that proves some injustice befell a select group, but not look for
data that shows this same injustice is common to most groups, or that it
has nothing to do with the groups as he categorized them, but does have to
do with some other feature that was ignored.

5Besides, it’s an easy trick to learn how to flip a coin so that it comes up Heads every
time.
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“Randomized” trials show up in places besides formal studies. Because
people are so wily is the reason nobody would trust a referee just picking
one of the teams to receive the kickoff at a football game. He is forced to flip
a coin to remove the suspicion that he favors one team over the other. The
coin flip can be manipulated and predicted, but most people believe that
nobody can. This is what makes the coin flip seem “random”.

If you conducted a study where people ordinarily expect you to use
“randomization” but you did not, then the best you can do is to not mention
you failed to “randomize”; however, you surely will be caught.

4. Surveys Polls, & Questionnaires

“Ninety-eight percent of Americans like to read about opinion polls. This
result is accurate to within plus or minus four points.” There are (at least)
two things wrong with that statement; by the time you finish this section
you should be able to find both. If you are on the ball, you should be able
to find the most glaring error immediately.

A survey or poll nearly always consists of a set of fixed questions together
with pre-determined responses asked of small samples of people (kind of like
multiple choice exams). The results from surveys and polls are obviously
statistical. Why? Because the results are never intended to be just about
the sample of people polled: they are meant to apply to larger groups of
humans; usually all Americans, or even all of humanity.

You can work miracles with surveys and polls. Consider asking these
two questions, “Would you support a law that requires the rich to pay their
fair share?” and “Would you like your marginal income tax rate to go up
by 15%?” Both are meant to show how much support there is for a new bill
to be passed. Both could be true representations of what that bill would
do. They are spin. A Congressman and newspaper who want the new tax
will commission a survey wherein respondents are asked question 1; those
representing folks who want to keep their money on the other side of the
aisle will counter with a survey that asks question 2. Both will announce
that “Americans support my position!” You will see the results, but you
will never—never—see the actual wording of the questions. You will only
hear the inferences made from them.

The true beauty of surveys and polls is that they are infinitely flexible.
You can prove support for any point of view by creating a survey. All it
requires is two things: clever question writing, and wild extrapolation. There
is a professional class of people called pollsters or market researchers whose
entire careers are devoted to the art of imaginative question writing. It isn’t
too hard to do yourself, but if you have doubts, it’s easy to find these firms
on the internet. Tell them what you hope to prove and they will provide
the questions for a fee. It goes without saying that sometimes those who
commission studies want to discover the truth of a matter; for example, a
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business wants to know whether a new product will sell. But even then, the
firms that do the surveys know well the adage of bearing bad news...

Obviously, the firms cannot reach all Americans, or all “Europeans”,
or whomever. So they call up a few people on the phone (land lines, not
cell phones usually), or head to the mall with clipboard in hand. This small
sample (who was at home at the right time or who passed by Auntie Annie’s
Pretzels) is invariably said to represent fairly the entire population. Don’t
worry about this; nobody ever questions your sampling method, or if they
do, it’s easy enough to overwhelm them with technicalities (this is done by
citing published works that suffer the same problems you do).

It is also imperative to ignore the above-mentioned fact that people lie.
They lie like dogs and often, particularly when presented with the question,
“How much money do you make?” Credit card companies which ask this
question on applications know that nearly everybody claims to make over
$100 thousand. Even if the question isn’t so bold as “Have you recently
committed tax fraud?” and is simple as “What is your age?”, people will
lie. They sometimes lie because of the pure pleasure of it, or they lie to
help you out by giving you answers they think you want to hear. Or maybe
they answer wrongly because they didn’t understand what you asked. These
facts, known to everybody, should decrease the certainty in all survey and
poll results. Strangely, however, they never do.

In some fields, such as medicine and psychology, a survey goes by the
glorified name of instrument. You do not just ask people a bunch of ques-
tions, as you do on a survey, you administer an instrument, which certainly
sounds a hell of a lot more impressive, but in the end you are doing noth-
ing more than asking a bunch of questions and hoping for the best. This is
a very technical subject, but I will try to summarize adequately the main
problems with a typical example. I mention no names not wanting to hurt
any body’s feelings.

An example. Two groups, one fat the other thin (classified by body
mass index6), are administered an “instrument” intended to measure their
“depressive status”, that is, whether they are depressed. The instrument
consists of several questions such as “I feel sad” to which the respondents
rate on a scale from 1 to 5, higher numbers indicating stronger agreement. A
score is created by, more or less, adding up the ratings across all questions.
If the person has a score higher than some cut off, they are said to be
depressed. Average scores for both fat and thin people are computed and a
classical test is performed which, of course, gives us a p-value, which we can
imagine is 0.05, and is therefore publishable. A paper is written announcing
“Thin people suffer more depression than fat ones.” What is the probability
that this proposition (call it S) is true? We already know that is has nothing
to do with the p-value (and we know that no proposition has a probability

6An imperfect measure of fatness. Calculated by weight (in kg) divided by height (in
m) squared.
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independent of some evidence, i.e. some “given”). But ignore that problem
and let’s think about the data itself.

First is that the questionnaire—the instrument, I mean—is said to mea-
sure depression. Does it measure it exactly? Nobody makes this claim for any
instrument, nobody claims that instruments exactly measures the thing it
purports to; unless that thing is a real, physical entity, like weight. But even
though everybody knows this, not everybody remembers this at all times.
Too, psychiatrists and psychologists will not always agree whether a given
patient is in fact depressed. So here are two sources of error: (1) the instru-
ment does not and cannot measure depression exactly, and (2) depression
itself is hard to define. These two sources of error have to be incorporated
into our probability of S. Error (1) is usually large, (2) is smaller, but is not
negligible.

It is the case that people, if given the instrument twice, will not answer
in the same way. Their internal state might have changed between the times
between administration or they might just answer differently because they
do not think too much or cannot recall their previous answers (what’s the
difference between a “4” and a“5” on the question “I feel sad”?). They
also might mark incorrectly. These possibilities provides two more sources
of error, (3) the internal states of people might fluctuate too rapidly to be
of use, and (4) inconsistency in answers. Error (3) is probably small or even
negligible, but error (4) is not and it is well known not to be. These further
make the probability of S less certain.

Any more? Well, people lie, they either don’t want people to know the
truth or they angle it towards what people want to hear; that’s error source
(5). The size of this error is usually unknown, but, ever hopeful, people
assume it is near zero. Another source: not only might people not be able
to distinguish between “4” and “5” on the scale, they might not know what
you are asking. For example, one instrument asks something like “I feel
blue”, which surely depends on cultural information not possessed by all.
Confusion about the questions is error source (6). This source is generally
acknowledged.

So how to cheat? Well, same way a lot of people do. Just do not mention
or downplay the sources of error. Ignore or dismiss them. This allows you to
claim your results are far more certain than they truly are. People will see
your small p-value and assume S is very probable, or even true.

Actually, you can mention the sources of error. People will nod their
heads when they read your caveats and know you are being intellectually
honest. But don’t sweat it, either. This is because, even though you mention
the (at least six) sources of error, you will not have to incorporate them into
your p-value calculation. This is an important fact: everybody, even though
they might discuss limitations, they all ignore the error when computing
their final statistics. Thus, the p-values, or posterior distributions of the
parameters, or even the predictive distributions of the observables will all
be too sure of themselves. Nobody will ever tag you for leaving out the error
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because nobody wants to give up on these paper-generating questionnaires.
If a referee for your paper questions your validated (which usually means
you gave your instrument in at least two samples and got similar answers)
instrument because of the errors mentioned above, it means he would have
to question and give up on his own. And nobody wants to do that.

Finally, you can easily create your own instrument, but it’s far easier
to use a well-established one on a new source of data. The vast number
of previously-published studies that use that instrument give weight to the
idea that this is a reasonable thing to do.

5. Publishable p-values

Most journals, say in medicine or those serving fields ending with “ol-
ogy”, are slaves to p-values. Papers have a difficult, if not impossible, time
getting published unless authors can demonstrate for their study a p-value
that is publishable, that is, that is less than 0.05. Sometimes, the data are
not cooperative and the p-value that you get from using a common statistic
is too large to see the light of print. This is bad news, because if you are
an academic, you must publish papers else you can’t get grants, and if you
don’t get grants, then you do not bring money into your university, and if
you don’t bring money into your university, the Dean is unhappy, and if
they Dean is unhappy you do not get tenure, and if you do not get tenure,
then you are out the door and you feel shame.

So small p-values are important. I of course advise against using classical
statistics methods, but if you are forced to (and some journal editors insist
on it7), then all is not lost if an initial large p-value is found. In fact, I would
go so far to say that if you cannot find a publishable p-value in any situation,
then you are not trying hard enough. There are several ways to lower your
p-value.

The most well known is to increase your sample size. This one is a lock.
Let’s take a look at the t-test statistic from Chapter 10 to see why.

t(x) =
xA − xB√
s2A
nA

+
s2B
nB

There is a mathematical phrase that begins “without loss of generality”
which I now invoke by letting, for ease of notation, nA = nB = n and
s2A = s2B = s2, so that t(x) becomes

t(x) =
√
n

(xA − xB)

s
Remember that we want a large statistic, a large t, the larger the better,
because larger ts mean smaller p-values. Do you see the trick? A larger n
means a larger t! All you have to do is to increase your sample size and just

7I often get referee and editor comments either saying they do not understand the
modern statistical methods so they are inappropriate, or could they please also have the
p-value. I am not kidding.
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wait for the small p-values to start rolling in. This trick always works in any
classical situation, even when the difference xA − xB is too small to be of
interest to anybody. This is why having a small p-value is called attaining
statistical significance and not practical, or useful, or clinical significance.

Incidentally, this trick also works in Bayesian statistics in the sense that,
with large samples, the posterior distribution of µA − µB will have most
probability above or below zero. But it fails miserably in modern observable
statistics because a trivial difference in µA − µB won’t make a tinker’s dam
worth of difference in the probability distribution of future observables. Your
model will not have skill, of example.

The next trick, if you cannot increase your sample size, is to change your
statistic! This comes from the useful loophole in classical theory that there
is no rule which specifies which statistic you can use in any situation. Thus,
though some creativity and willingness to spend time with your statistical
software, you can create small p-values where others see only despair. This
isn’t so easy to do in R because you have to know the names of the alternate
statistics, but it’s cake in software like SAS, which usually prints out dozens
of statistics in standard situations, which is one reason SAS is worth its
exorbitant price. Look around at the advertising brochures of statistical
software and you will see that the openly boast of the large number of tests
on offer.

For example, for use in “testing differences between proportions”, just off
the top of my head I can think of the z statistic, the proportions test with
and without correction for continuity (two or three to choose from here),
χ2 test, Fisher’s exact test, McNemar’s test, logistic regression. There are
dozens more and teams of academic statisticians constantly add to the pile.
Don’t believe it? Here’s a small table of these tests for the TSD/Sex data
from Chapter 11.

Test p-value
Prop test 0.78
Fisher’s 0.70
Logistic Reg. 0.52
χ2 0.50
z test 0.49
McNemar’s 0.24

Because I was only able to get to 0.24 just means I didn’t try hard
enough. Which is the correct p-value? They all are! That’s the beauty of
this trick. It’s thrilling! Not one of these p-values is more “right” than any
other one. Each is valid: there is no way to prove which is best. If all you
know is classical statistics, let this knowledge sink in. It should prove to you
that p-values are not what you probably thought they were.

For “testing differences between means”, there is the t-test (a couple
of versions of this, actually), Wilcox test (also called Mann-Whitney), sign
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tests, Spearman correlation tests, Kendall’s τ , Kruskal-Wallis test, Kolmogorov-
Smirnov test, permutation test, Friedman two-way analysis of variance—I’m
running out of breath—and many more. Here’s some of those tests for the
advertising data:

Test p-value
Spearman 0.87
Perm. 0.20
t-test 0.19
Wilcox 0.14
Kol.-Smi. 0.08

Nearly there!
Please remember that in this example, like the previous one, the data is

the same; the only thing that changes is that classical statistical test.
The key to this deceit is to never admit what you did. When it comes

time to write up your result, boldly and authoritatively state, “We used
Johnston’s (Johnston, 1983) frammilax test for differences in means.” Toss-
ing in a citation always cows potential critics; tossing in two or more guar-
antees editorial acquiescence. Do not tell the reader that you went through
a dozen tests to find the lowest p-value. Act as if “Johnston’s test” was what
you had in mind all along.

Think this doesn’t happen and old Briggs is exaggerating? Then turn to
the 16 August 2008 Wall Street Journal (WSJ) article by Gabe Thornhill
wherein he describes the “controversy” over a study Boston Scientific pub-
lished about their new stent, the Taxus Liberte. Boston Scientific, testing
whether its stent and a standard one were equivalent, used the Wald Test
and got the magic p-value of 0.0487. Less than 0.05! Investors could now in-
vest with confidence. Well, somebody—a competitor?—didn’t like this and
said this p-value was too close to the magic level. The WSJ actually got
the data and found that using “a number of other methods of calculation—
including 14 available in off-the-shelf software programs— the Liberte study
would have been a failure by the common standards of statistical significance
in research.” In other words, they tried 13 other tests (many of which are
different from the ones I listed above—there are so many!) and all of those
tests gave p-values larger than 0.05. The WSJ even solicited help from some
very prominent statisticians who agreed with their findings. Poor Boston
Scientific!

But do you know, after all this hoopla, the largest p-value the WSJ was
able to find was only 0.0547, surely not an insanely large departure from the
publishable limit—which shows you how silly the whole story is, and how
irrational people are when it comes to making decisions based on p-values

This cheating technique is unavailable in Bayesian or observable statis-
tics. True, you can change your default prior distribution on the parameters
or even change the model (see below), but editors in most fields are still
suspicious of modern methods and tend to be conservative and will likely
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insist on a well-known default. There will be more room for creativity in,
say, ten years when modern methods become familiar.

Our last option, if you cannot lower your p-value any other way, is to
change what is accepted as publishable. So, instead of a p-value of 0.05,
use 0.10 and just state that this is the level you consider as statistically
significant. I haven’t seen any other number besides 0.10, however, so if your
p-value is larger than this the best you can do is to claim that your results
are “suggestive” or “in the expected direction.” Don’t scoff, because this
sometimes works. You can really only get away with this in secondary and
tertiary journals (which luckily are increasing in number) or in certain fields
where the standard of evidence is low, or when your finding is one which
people want to be true. This worked for second-hand smoking studies, for
example, and currently works for anything said to be negatively associated
with global warming.

6. Expand Your Data

Here is ancient wisdom:

Seek and ye shall find.

Nowhere does this better apply than in data analysis. Sometimes, despite
all your efforts, you can not find a way to produce a publishable p-value
with a given set of data. You tried all the tricks above, you can’t increase
the sample size and all the classical tests under the sun bring no joy. What
to do? Increase your data! No, I don’t mean increase the sample size, but
increase the data on which you are making tests.

Everybody is constrained by time at least, but by budget usually, which
puts a cramp on the sure-fire method of increasing sample size to get a small
p-value. Well, friends, I am here to tell you, you can leave your “significant”
p-value set at 0.05, leave your sample size as it is. You can still find a
significant result with the method of multiple testing. This one requires a
little more planning because you have to think of it before you start collecting
data. For example, in the TSD example, don’t just collect the fact that there
were men and women; also observe the age, the weight, the race, day of the
week, hour of the day, whether the person wore jeans, or a hat; stop and ask
the people their income, their political party, their views on this and on that,
whether the day was sunny, whether it was raining, the traffic density, and
any other thing you can imagine. The only trick is to record as many different
things as possible. Five is too few, fifteen is better, a hundred or more is
practically a guarantee. I once was the statistician on a study that collected
over 5000 items per person! I promise this is true. It was a medical study,
wherein everything in a patient’s chart was recorded, not once, but five to
six times over a period of time, plus the individual questions from several
“instruments”, some homemade, some “validated” (which means more than
one person in print used it).



7. MODELS 163

Your main interest, in the TSD example, is still whether or not there is
a difference between men and women, which we have already seen only gets
our p-value (after trying several tests) to a non-publishable 0.24. The next
thing to try is sub-group analysis. See if there is a difference between men
and women on just the sunny days or the cloudy, or when the traffic density
was high or when it was low, or whether it was a weekday or weekend, and
on every other possible cut of the other variables. Race is always popular.
One of these differences is bound to give you a publishable p-value.

Statisticians are on to this one, so be careful in how you describe your
results. Whatever you do, do not say you tried every possible combination.
You will be busted. Some statistician will immediately point out that you
should have used so-and-so’s method of correcting for multiple testing (the
result of which is to inflate all your p-values). So be daring and just state,
“Our results indicate that among poor Hispanics, more men than women
wear TSDs” and nobody will ever question you, especially if you mention a
disadvantaged group (e.g. the poor). Try to angle your writing towards the
idea that this subgroup was your main interest all along.

It can still happen that, even after exhaustive efforts, you still cannot
find a difference between men and women in any of the subgroups. This kind
of thing is rare, and its more likely you will have got bored of looking than
there isn’t a statistically significant result lurking somewhere. Can you guess
what to do next? Right! Abandon the quest to find differences between men
and women and simply find a difference between some other group; sunny
and cloudy days, or whatever. If you have collected enough data, you simply
cannot go wrong.

7. Models

Suppose you ran a classical regression (the glm model) and found that
some of the coefficients of interest did not have a small enough p-value. You
can try the tricks above, but you could also scan through the data itself to
make sure that nothing is causing problems.

It happens that sometimes in your data an exceptionally large or small
value appears. Statisticians call these outliers. I don’t mean bad data values
that arise from, say, bad typing, or by transposition, transcription, or some
other honest mistaken entry. You’ll find those when you look through the
data and remove them anyway. No—what I mean are large or small values
that are real, that were really measured, but that stick out and which cause
your model to go astray. This happens a lot with medical and economic
data where the use of the normal distribution to quantify uncertainty is
ubiquitous. Very large and small data values show up all the time. What to
do? Smack the label outlier on those extreme values, and then shun them,
by which I mean, toss them out. Recompute your model after this and you
will usually find improvement (smaller p-values). I have seen this done on
my presence on more than one occasion.
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What’s an outlier? A piece of data that does not fit your expectations.
With surgical precision, then, you can cut out any offending variable so that,
in the end, your data will act just like you wanted it to. Your chosen model
will now fit. Of course, you will have learned nothing new, you will merely
have reinforced your preconceptions, but that is always a comfort, isn’t it?

Gottfried Leibniz, co-discover of calculus, said this

Let us suppose for example that some one jots down a
quantity of points upon a sheet of paper helter skelter,
as of those who exercise the ridiculous art of Geomancy;
now I say that it is possible to find a geometrical line
whose concept shall be uniform and constant, that is, in
accordance with a certain formula, and which line at the
same time shall pass through all of those points...Leibniz
(2005)

What the old boy is saying is that it is always possible, given any set of data,
to find a model that fits those data to any level of exactness, even perfectly,
even if that data is completely arbitrary. The implication, of course, is that
if you can’t find a model that fits your data well, then you aren’t trying.

In linear models, such as regression, it’s easy to find good fits. You have
n data points (different people, say). One variable you want to predict, the
remaining variables help you predict it. There are p of these. If you read
the section above, you know you want p to be a big number. A well known
trick is to let p get close to n in size. If p = n then, with a regression model,
you will meet Leibniz’s criterion exactly, such that you will have found a (p-
dimensional) line that goes through each data point perfectly. Now, chances
are that if you do this the p-values on the coefficients will likely not be
publishable, so you have to change strategy. Do not tout p-values, trumpet
your model fit. I earlier skipped over the measure R2 (which you can get
from running lm instead of glm, which gives you AIC instead; I skipped these
measures because they don’t take the uncertainty of your model’s guesses
into account, which here works in your favor). The highest and best R2 can
be is 1 and the lowest and worst is 0. If p = n your R2 will equal 1, no
matter what set of data you have! Obviously, you cannot report an R2 = 1.
This is like a psychic reading your mind exactly. People would be suspicious
that a fast one is being pulled.

Take a few variables out of your model and report a modest, say, R2 =
0.6, which sounds low, but believe me, it is not. Some fields would celebrate
a value this high (these fields, which shall remain nameless, routinely see
R2s in the 0.1 to 0.2 range). You can try this with regression models, and
it’s an OK trick, but if you do people usually get curious about the p-values
on the coefficients, which is an annoyance because we know these won’t
pass inspection. To get around this, skip regression and move on to what
are called latent variable models. These go by names like path and factor
analysis.
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The way these work is that you have an observable y and a bunch of
observable xs which are used to help explain y. So far, this is the introduction
to regression, which isn’t that exciting. Now here’s the beautiful part. What
you do is to pretend that there are a series of hidden, unobservable or latent
variables α1, α2, . . . , αq that lie between x and y. Since x has p different
variables, and there is no limitation on how many hidden variables that can
lie between each xj and y, and how many different paths can be between
each of the αi (yes! they can be connected too!), you have an inexhaustible
supply of models. Ready for the best part? These are usually used just
to find something like high R2, the influence of the observable coefficients
(hence, their p-values) are deemphasized. You can report on the p-values of
the unobservable latent variables instead!

Besides the usually academic specialty suspects, these kinds of models
find favor in marketing. Latent variable models go by the name “neural
nets” among the highly computer literate (there are differences in internal
structure between neural nets and other latent variable models, but they all
share the idea that hidden forces are at work).

8. Sleight of hand

I obviously cannot teach you every possible way to turn leaden data into
gold (peer-reviewed) published papers. Statistics is too big a field and the
number of methods is huge and ever growing. The techniques I have given
are the easiest and most reliable and you can nearly always get away with
them as long as you are careful about your language.

As I mentioned above, boldness is imperative. Simply write your results
as if the findings where what you were looking for and expected all along. If
you have to use some obscure classical test or model, be sure to include at
least two references that show that other papers (they don’t have to be in
your field) have used them. People, especially journal editors, dislike novelty.
Reassure them that what you are doing everybody does.

Vagueness is ever useful. Do not confess all the steps you had to go
through to get your desired finding. Let people think you are as honest as
they are.

At the worst, if all else fails, then at least claim that your results are
suggestive or in the direction one expects if your beloved theory were true.

9. Homework

(1) Find one use of statistics in an advertisement. Print is best, because you
can just clip it out or photocopy and hand it in. If it’s television or
advertising, try to tape it and then copy down exactly what was said
and done, and exactly where and under what circumstances you heard
or saw it (what channel, time, web page, etc. etc.). Investigate how the
copywriters might have cheated.

(2) Crack open a journal in a field which routinely uses statistical methods
on human data. Find an example of a paper that might have—just might
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have, I emphasize (don’t accuse anybody unless you’re sure you can get
away with it)—used some of the creative techniques of statistical analysis
mentioned in this chapter.

(3) As a group, redo the thinking suppression device data collection, this
time making note of as many other variables as possible. Each member
of the group can then take different slices (sunny vs. cloudy days, etc.)
and compute the standard tests. Each person should write up his results
to paint them in the best light. See if it fools your classmates.

(4) Try Leibniz’s Geomancy example. Take out a piece of paper and draw a
cross on it right down the center. This will be our standard mathematical
axes. Get a pen, close your eyes, and stab at the paper at least a dozen
times. Open your eyes (if I didn’t specify this step, some clown would insist
that he couldn’t perform the remaining steps) and stare at the points. Try
to find a smooth curve that passes through most of the points. Come up
with a story for your curve.

(5) A more ambitious class project is to do a survey. Pick a topic which
might have some controversy. Split the class in two. One side writes a
question (or two) that seeks to gain support for the topic; the other sides
seeks to gain dissent. The questions should be as fair as those found in
any survey. Both sides should not reveal their questions until after all
the results are in and analyzed. The main goal is to see how much you
can get away with. Go to the mall with a clipboard and collect people’s
sex, age, college status (i.e. freshman, etc.), birthcountry (USA or not),
and anything else you can think of. Particularly ask about income. The
answers you get from this question should forever after instill skepticism
in any survey which claims its results are influenced by income (rich or
poor, and so on). In the end, write up the results and only then reveal to
the other side what you have done. Contact me at matt@wmbriggs.com
and let me know how it went.



CHAPTER 15

The final chapter

1. What is statistics?

The state of statistics is in somewhat of an odd place. The actual practice
of statistics—as opposed to its theory—has evolved into procedures that
make people more certain than they should be. This is because the methods
of classical statistics have been designed, or co-opted, to do the thinking
for you. Now, there are always careful statisticians out there, even those
who exclusively practice classical statistics, who routinely warn against the
excess of confidence, but their warnings never seem to stick. Pick up almost
any academic journal and you will find examples of “statistically significant”
results and conclusions presented with authority.

The practices that engender over-confidence need to change. This is why
I have been so insistent that you think about observable, verifiable data.
Any mistakes or over-confidence in your statistical procedures will become
quickly and glaringly obvious if observable data is your focus. This is not
so using the old ways. Let’s look at the outline of the old and the new and
contrast them.

Here are the steps in how classical statistical problems are handled:

(1) Start with quantifying your uncertainty in an observable using a
probability distribution.

(2) The distribution will have unobservable parameters which you do
not know but which must be specified.

(3) Collect observable data.
(4) Look up formula in cook book and use this to make a guess at the

parameter’s values.
(5) Compute your p-value. If it is less than the magic numbers, state

the result is “significant”.

Sometimes people substitute confidence intervals for p-values, but we know
that these give identical answers. The problem is obvious. The focus is on
the unobservable parameter. A guess is made of it and if the p-value is
publishable, the words “ statistically significant” will be read by most to
mean “true”, as in “My theory or hypothesis is true.” In this system, no
matter in what circumstance or type of problem, you will be too sure of
yourself in the end.

Now here is a guide to how statistics problems should be solved:
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(1) Start with quantifying your uncertainty in an observable using a
probability distribution.

(2) The distribution will have unobservable parameters which you do
not know but which must be specified.

(3) Quantify your uncertainty in these parameters using probability
distributions.

(4) Collect logical evidence and observable data, which provide up-
dated information about the parameters which you still do not
know and which still have to be quantified with probability dis-
tributions.

(5) Since you do not care about the parameters, and you do care about
future observables, quantify your uncertainty in these future ob-
servables by accounting for the uncertainty you still have in the
parameters.

(6) Check to see if your model has skill, that is, that it can beat a
“model” that just guesses.

(7) If your model does have skill, use it to make statements and con-
clusions about future observable data.

If you stop at step 4, you are a typical Bayesian (subjective, usually). If you
stop at step 2 and branch off to make statements about functions of observ-
able data assuming that certain details about the parameters are true, you
are a frequentist. By far, the vast majority of people who practice statistics
are frequentists. A growing number of people will use Bayesian methods to
say something about the parameters. Shockingly few people go all the way
to make statements about actual observables.

The beginning part of Step 4 should have more emphasis when it comes
time to write up the results. Medical papers usually do a good job with
this. The process even has the informal name “Table 1,” which is found in
most papers. It is a fairly complete description of the demographics of the
population. This is necessary because, remember, the probabilities for the
future observables are for data that “looks like” the old data you collected.
This warrants a heavier emphasis than is normally given on the description of
your sample. What are the characteristics of your sample? This is discussed
in detail below.

If your data has anything to do with humans you have to keep in mind
that your old data exists not only in space but in time. Don’t just read a
sentence like that and go on with your business. Think about it. How far into
the future are your results expected to hold? Days, weeks, years? If history
has proven anything, it has shown that people are rotten at predicting the
future, while conversely still believing they are good at it. Your results are
also probably much more limited than you first thought.
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2. Randomized trials

As we previously discussed, there is a near religious belief in “randomized
trials.” Here is an example of one (I met a prominent physician at a cigar
lounge who suggested this1). Come to New York City and on Tuesday walk
across 5th Avenue in the middle of the block at 8:45 am. I will “random-
ize” participants to either close their eyes or leave them open. Everybody
that makes it to the other side we will label “survivors”. We want to test
whether those with their eyes open survive more than do those with their
eyes closed. Ok, everybody who volunteers to participate in this “randomized
controlled trial” raise their hands? According to federal guidelines, we can-
not know what the answer to this experiment would be until we actually ran
it. Your intuition is not good enough! So if I don’t get enough volunteers, I’ll
have to start picking people. You might think of offering some lame excuse
about “danger” or “traffic”. But your intuition from which these objections
arise counts for nothing. According to classical statistics—and the “scientific
method”—there is no way to know what the outcome of this experiment will
be unless we actually ran the “trial.”

Gordon Smith and Jill Pell, in the British Medical Journal2, wrote a
paper called “Parachute use to prevent death and major trauma related to
gravitational challenge: systematic review of randomized controlled trials.”
They pointed out that people are using parachutes without any statistically
significant evidence that they are effective. They said, “We were unable to
identify any randomized controlled trials of parachute intervention.” Their
conclusion:

As with many interventions intended to prevent ill health,
the effectiveness of parachutes has not been subjected to
rigorous evaluation by using randomized controlled trials.
Advocates of evidence based medicine have criticised the
adoption of interventions evaluated by using only obser-
vational data. We think that everyone might benefit if the
most radical protagonists of evidence based medicine or-
ganised and participated in a double blind, randomised,
placebo controlled, crossover trial of the parachute.

That is, they want to run a trial similar to my doctor’s 5th Avenue experi-
ment. Some will be “randomized” to receive parachutes, others not. At the
end we’ll compute a Fisher’s exact test on the proportion of survivors.

Incidentally, the decision you make not to participate in either of these
trials is based on an inductive argument (how?), which as we all remember is
forbidden thinking in classical statistics. In many fields, like physics, mete-
orology, chemistry, parachute studies, and pedestrian crosswalk-ology most
experiments are not “randomized”. They are controlled. All the variables

1Which is evidence that smoking is good for you.
22003, volume 327, pp 1459–1461
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that might influence the outcome are controlled for as carefully as possible.
Experimenters in these fields do make mistakes, of course, but they are rare.
It is also case that in physical experiments people have the luxury of con-
trol, whereas in experiments with people the opportunities for control are
limited.

One example of a human-centered partially-controlled experiment is a
drug trial. We can control who gets what drug. Sometimes, we can fur-
ther control for the number of men and women who get it, but that’s less
common. We should be controlling for many physically or biologically mea-
surable quantities, like sex or weight, but we often do not. We instead rely
on “randomization” to equal out the differences between groups in trials.
Obviously, there is no way to control for everything (there is an infinite
amount of everything; see the homework), but we should be able to control
for the items most likely to be associated with the outcome. This means that
we have to use extra-data evidence, such as historical data, other deductive
and inductive arguments, and intuition.

There is a general distrust in intuition (intuition also contributed to your
refusal to enlist in the above trials). Now, there is some evidence that in cer-
tain experimental situations (some of which are highly artificial), people’s
intuition can mislead them. And it is certainly true that as circumstances
become increasingly complex (such as in individual or group human behav-
ior), intuition can often lead you astray (Gilovich et al., 2002). But because
intuition sometimes misleads us does not mean that it always does, especially
in circumstances which are simple. Like looking both ways before crossing
the road. See Kadane (1996) for examples of how intuition, and historical
and other evidence can be used in clinical trials.

3. Parameters and Observables

I have repeatedly emphasized that we are interested in quantifying un-
certainty in observables, which are, for the most part, real physical entities. I
have also said that our lone goal should almost never be to make statements
about unobservable parameters. Probability statements inferred from data
about parameters will always be more certain than statements about what
we can actually see and test.

Sometimes, though, all you can do is to make a decision about the value
of something you cannot see because it is impossible to observe the observ-
able. The most prominent example is a jury trial. Did Tom kill Wendy? Tom
has pleaded innocent, the prosecutor presents damning evidence about the
strange relationship Tom has with his dog, the defense lawyer points out
Tom’s sweet smile and facility with fortran. In the end, the jury has to
compute this probability

Pr(Tom is guilty|Evidence presented)

The statement “Tom is guilty” is a parameter in the sense that it cannot
be observed, yet the jury still has to estimate a (non-numerical) probability
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“beyond reasonable doubt” in order to make the decision that Tom is guilty.
In most trials, the jury will never know that it made the correct decision
because the event can never be observed.

Other examples of impossible to observe events are counterfactuals. Here
is a common example of one:

Pr(Germany wins WWII|Hitler does not invade Russia).

Many people have argued that the statement “Germany wins WWII” given
the evidence above has a high probability of being true. Now, it is certain
that the proposition “Hitler does not invade Russia” is false since in fact
Hitler duplicated Napoleon’s folly. It is no difficulty for logical probability
to give estimates for counterfactuals, however, since probability statements
are matters of logic. My favorite example is from the philosopher David
Stove (1986)

Pr(Bob is a horse|Bob is a winged horse) = 1.

Obviously, the probability (given our experience) of “Bob is a winged horse”
is 0, but this is no bar to making the logical statement that if, in fact, Bob
was a winged horse he is also certainly a horse.

This is a very important point in the favor of logical probability because
counterfactuals are everywhere in human affairs and decision making. Some
examples: “She would have got better had the doctor not administered the
drug”, “I would have had a better day if I didn’t hit the snooze alarm”, “I’d
would have gone if only my mom would have let me” and on and on.

Incidentally, classical probability and statistics cannot deal with any
of these situations. Neither is most of the mathematical apparatus of mod-
ern probability equipped to handle unobservable events and counterfactuals.
This very naturally leads us to our next topic.

4. Not all uncertainty can be quantified

It is, among the more mathematical of statistical and economical circles,
somewhat of a controversial statement to say that not all probability and
risk can be quantified. However, it is true and easily proved.

Let some evidence we have collected—never mind how—be E = “Most
people enjoy Butterfingers”. We are interested in answering the truth of this
statement: A = “Joe enjoys Butterfingers.” We do not know whether A is
true or false, and so we will quantify our uncertainty in A using probability,
that is written like Pr(A|E), and which reads “The probability that A is
true given the evidence E”. If we can recall Chapter 1, this should all be
review.

In English, the word most usually means more than half; it could even
mean a lot more than a half, or even nearly all; in some cases it merely
means a plurality3, in which case we can change the evidence to E = “At
least half of all people enjoy Butterfingers.” There is certainly ambiguity in

3Thanks to my friend Raphael for pointing this out.
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its definition. But since most usually means more than half, we can partially
answer our question, which is written like this

(40) 0.5 < Pr(A|E) < 1

and which reads “The probability that A is true is greater than a half
but not certain given the evidence E.” This answer is the best we can do
with the given evidence. This answer is a quantification of sorts, but it is
not a direct quantification like, say, the answer “The probability that A is
true is 0.673” which we always get using the computer.

It is because there is ambiguity in the evidence that we cannot com-
pletely quantify the uncertainty in A, no matter what the computer tells us.
That is, the inability to articulate the precise definition of “most people” is
the reason we cannot exactly quantify the probability of A.

The first person to recognize this, to my knowledge, was John Maynard
Keynes is his gorgeous, but now little read, A Treatise on Probability (2004),
a book which argued that all probability statements were statements of logic.
To Keynes—and to us—all probability is conditional; you cannot have a
probability of A, but you can have a probability of A with respect to certain
evidence. Change the evidence and change the probability of A. Stating a
probability of A unconditional on any evidence disconnects that statement
from reality, so to speak. All this we have learned so far.

For many reasons, Keynes’s eminently sensible idea never caught on and
instead, around the same time his book was published, probability theory
bifurcated into two antithetical paths. The first, as we know, was called
frequentism: probability was defined to be that number which is the ratio
of experiments in which A will be true divided by the total numbers of
experiments as that number of experiments goes to infinity.4 This definition
makes it difficult (an academic word meaning impossible) to answer what is
the probability that Joe, our Joe, likes Butterfingers. It also makes it difficult
to define the probability for any event or events that are constrained to occur
less than an infinite number of times (so far, this is all events that I know
of).

The second branch was subjective Bayesianism. To this group, all prob-
abilities are experiences, feelings that give rise to numbers which are the
results of bets you make with yourself or against Mother Nature (nobody
makes bets with God anymore). To get the probability of A you poll your
inner self, first wondering how you’d feel if A were true, then how you’d
feel if A were false. The sort of ratio, or cut point, where you would feel
equally good or bad becomes the probability. Subjective Bayesianism, then,
was a perfect philosophy of probability for the twentieth century. It spread
like mad starting in the late 1970s and still holds sway today; it is even

4Another, common, way to say infinity is the euphemism “in the long run.” Keynes
has famously said that “In the long run we shall all be dead.” It’s always been surprising
to me that the same people who giggle at this quip ignore its force.
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gaining ground on frequentism. In its favor, it should be noted that, after
we get past the bare axioms and talk of “feelings”, the math of subjective
Bayesianism and logical probability is the same.

What both of these views have in common is the belief that any state-
ment can be given a precise, quantifiable probability. Frequentism does so
by assuming that there always exists a class of events—which is to say, hard
data—to which you can compare the A before you. Subjective Bayesianism,
as we have seen, can always pull probabilities for any A out of thin air. In
every conceivable field, journal articles using these techniques are multiply-
ing. It doesn’t help that the many times probability estimates are offered in
learned publications, they are written in dense mathematical script. Any-
thing that looks so complicated must be right!

The problem is not that the mathematical theories are wrong; they al-
most never are. But because the math is right does not imply that it is
applicable to any real-world problems. We have already talked about how
normal distributions are used too often. The math often is applicable, of
course; usually for simple problems and in small cases the results of which
would not be in much dispute even without the use of probability and sta-
tistics. Take, for example, a medical trial with two drugs, D and P, given to
equal numbers of patients for an explicitly definable disease that is either
absent or present. As long as no cheating took place and the two groups of
patients balanced, then if more patients got better using drug D, that drug
is probably better. In fact, just knowing that drug D performed better (and
no cheating and balance) is evidence enough for a rational person to prefer
D over P.

All that probability can do for you in cases like this is to clean up
the estimates of how much better D might be than P in new groups of
patients. As long as no cheating took place and the patients were balanced
and typical, the textbook methods will give you reasonable answers. But
suppose the disease the drugs treat is not simply defined and the patients
aren’t “typical” or balanced. Let’s write what we just said in mathematical
notation so that certain elements become obvious.

Pr(D > P|Trial Results & No Cheating &

Patients Like Before) > 0.5.(41)

This reads, the probability that somebody gets better using drug D
rather than P given the raw numbers we had from the old trial (including
the old patient characteristics) and that no cheating took place in that trial
and the new patients who will use the drugs “look like” the patients from
the previous trial, is greater than 50% (and less than certain).

Now you can see why I repeatedly emphasized that part of the evidence
that usually gets no emphasis: no cheating and patients “like” before. Sup-
pose the outcome of applying a sophisticated probability algorithm gave us
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the estimate of 0.728 for equation (41). Does writing this number more pre-
cisely help if you suppose you are the doctor who has to prescribe either D
or P? Assume that no cheating took place in the old trial, then drug D is
better if the patient in front of you is “like” the patients from the old trial.
What is the probability she is so (given the information from the old trial)?

The word like is positively loaded with ambiguity. It is of utmost impor-
tance that we write out the last question mathematically:

(42) Pr(My patient like others|Characteristics from previous trial)

The reason to be verbose in writing out the probability conditions like
this is that it puts the matter starkly. It forces you, unlike the old ways of fre-
quentism and subjective Bayesianism, to specify as completely as possible
the circumstances that form your estimate. Since all probability is condi-
tional, it should always be written as such so that it is always seen as such.
This is necessary because it is not just the probability from equation (41)
that is important, equation (42) is, too. If you are the doctor, you do not—
you should not—focus solely on probability (41) because what you really
want is this:

Pr(D > P & My patient like before|
Trial Results & No Cheating & Patients’ Character)(43)

which is just (41)×(42). I am in no way arguing that we should abandon
formal statistics which produces quantifications like equation (41), i.e. the
very ones we have been using in this book. But I am saying that since,
as we already know, exactly quantifying (42) is nearly impossible, we will
be too confident of any decisions we make if we, as is common, substitute
probability (41) for (43) because, not matter what, the probability of (43)
is always less than the probability of (41).

Appropriate caveats and exceptions are usually delineated in journal
articles when using the old methods, but the results are buried in the text,
which causes them to be weighed more or less importantly, and which give
the reader a false sense of security. Because, in the end, they are left with
the suitably highlighted number from equation (41), that comforting exact
quantification reached by implementing impressive mathematical methods.
That final number, which we can now see is not final at all, is tangible, and
is held on to doggedly. All the evidence to the right of the bar is forgotten
or downplayed because it is difficult to keep in mind.

The result to equation (41) is produced, too, only from the “hard data”
of the trial, the actual physical measurements from the patients. These num-
bers have the happy property that they can be put into spreadsheets and
databases. They are real. So real that their importance is magnified far be-
yond their capacity to provide all the answers. They fool people into thinking
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that equation (41) is the final answer, which it never is. It is always equa-
tion (43) that is important to making new decisions. Sometimes, in simple
physical cases—like blocks on inclined planes but not like crops in blocks
of fields—probabilities (41) and (43) are so close as to be practically equal;
but when the situation is complex, as it always is when involving humans,
these two probabilities are not close (Gill, 2004).

The situation is actually even worse than what we have discussed so far.
Probability models, the kind that spit out equation (41), are fit to the “hard
data” at hand. The models that are chosen are usually picked because of
habit and familiarity, but responsible practitioners also choose the models so
that they fit the old data well. This is certainly a rational thing to do. The
problem is that, since probability models are only designed to say something
about future data, the old data does not always encompass everything that
can happen and so we are limited in what we can say about the future. All
we can say for certain is what has happened before might happen again. But
it’s any body’s guess whether what hasn’t happened before might happen in
the future.

The probability models fit the old data well, but nobody can ever know
how well they will fit future data. The result is that over reliance on “hard
data” means that probabilities of extreme events are underestimated and
mundane events overestimated. The simple way to state this is the system
is built to engender over-confidence. Memorize this and apply it every result
you compute or that you read from somebody else.

5. Decision Analysis

You’re still the doctor and you still have to prescribe D or P (or nothing).
No matter what you prescribe something will happen to the patient. What?
And when? Perhaps the malady clears up, but how soon? Maybe the illness
is merely mitigated, but by how much? You not only have to figure out what
treatment is better, but what will happen if you apply that treatment. This
is a very tricky business, and is why, incidentally, there is such a variance
in the ability of doctors.5 Part of the problem is explicitly defining what is
meant be “the patient improves.” There is ambiguity in that word improve,
in what will happen with either of the drugs is administered.

Jinnah Mohammed6 reminds us that even if the probability of D being
better than P is huge (or there is a “statistically significant” difference) this
is in no way tells us the probability a patient gets better using D (or P). It
might be that, in the trial of 1000 patients each of D and P, 10 got better
under D, and none under P. D is better, but D is certainly no miracle cure.

5A whole new field of medicine has emerged to deal with this topic. It is called
evidence-based medicine. Sounds good, no? What could be wrong with evidence? And its
not entirely a bad idea, but there is an over reliance on the “hard data” and a belief that
only this hard data can answer questions. We have already seen that this cannot be the
case.

6LivingManicDepressive.com
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There are two separate questions here: (1) defining events and estimating
their probability of occurring and (2) estimating what will happen given
those events occur. Going through both of the steps is called computing
a risk or decision analysis. This is an enormously broad subject which we
won’t do more than touch on, only to show where more uncertainty comes
in (for applications in economics, see Lancaster, 2004).

We have already seen that there is ambiguity in computing the prob-
ability of events. The more complex these events the more imprecise the
estimate. It is also often the case that part (2) of the risk analysis is the
most difficult. The events themselves cannot be articulated, either com-
pletely or unambiguously. In simple physical systems they often can be, of
course, but in complex ones like the climate or ecosystems they are not.
Anything involving humans is automatically complex.

What the older statistical methods and the strict reliance on hard data
and fancy mathematics have done is to create a system where there is too
much certainty when making conclusions about complex events. We should
all, always, take any result and realize that it is conditional on everything
being just so. We should realize those just so conditions that obtained in
the past might not hold in the future. We should be far less certain than we
are.

6. Homework

(1) Write down five counterfactuals, being explicit about the evidence, and
estimate the probability of them being true. There is no need, and might
even be impossible, to give a precise number to these estimates.

(2) Write down five statements and evidence such that the statements cannot
be given precise probabilities. Recall Chapter 1 where the evidence was
“M might happen” and we wanted to quantify the probability of “M will
happen”, the best we could do is to say that the probability was greater
than 0 but less than 1.

(3) What is the probability that D = “The next child born will be a genius”?
Be explicit in your list of premises/evidence. Is your final answer too
specific, not specific enough?

(4) extra Imagine a “randomized” medical experiment in which we will
control only whether patients are placed in one of two divisions, control
or new treatment. The treatment and control are designed to lower weight.
A computer will flip a coin to assign patients to one of the two divisions.
Next, list all the separate factors or variables that can also effect the
outcome. Be as thorough as possible. Suppose, to simplify matters, that all
of these factors can be adjusted so that they can be split into two groups
such that there is a (roughly) 50% chance any patient would be in one of
the groups. For example, sex (male or female), physical activity (a cutoff
chosen so that there are two groups high or low), thyroid activity (normal
or abnormal), and so on. Now, all of these factors will not be independent
from one another, but for the purposes of this exercise, suppose that they
are. We can say that a division is imbalanced if it has less than 10% or
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more than 90% of patients from any group (e.g. the treatment group has
only 5% men). What is the probability that the two divisions are balanced
by randomizing?

(5) Find, in the popular press, an announcement of the result of some new
medical trial or finding. Scrutinize this report, locate the original paper
if you can, probe for weaknesses and explicate exceptions. Try to find
everything that could have gone wrong and how the researchers and the
reporters might have been too certain in their claims. This task sounds
difficult, but experience has shown that it is not.

(6) extra: If your class is one of specialists (for example, physicians), do
the previous homework problem but on a paper chosen from a recent
important journal.





APPENDIX A

List of R commands

The book website http://wmbriggs.com/book contains several files of R
commands which can be downloaded. Look especially for the file worked.example.R,
which contains examples of analyses from start to finish. On that site, there
is also a README file which will detail any updates to the code. I anticipate
making changes and improvements to the code over time, but the original
function names will not be touched so that anybody who reads this book
will be able to perform any of the calculations outlined in the text. There
may of course be new functions added.

It is important to remember that these methods are not perfect and that
many better exist (see Sivia, 1996). Mine are not bad, but they are very lim-
ited. Software for general modern analysis does exist, but it is complicated—
far more complicated than any method here. A favorite is JAGS (2008).

This Appendix contains simple summaries of all the R commands used in
the text, plus some commands you have not yet seen. R is a simple and a very
complicated language, so do not be frustrated by an inability to master it in
one sitting. On-line help is as close as any internet search service. Chances
are if you have a question, somebody else has had the same one and posted
the answer on some web site.

Basic help

Command Function
apropos(’abc’) This will list all the functions/commands

that have abc in their names. Be sure you
use quotes around the text.

?command A shortened version of help(command).
help(command) Obvious. Be sure to look at the end of

the help file because there are usually
pre-worked examples that you can cut
and paste. Do not use quotes around the
command.

Basic data manipulation

Command Function
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attach(x) Attaches, or makes “visible”, the variables
names in the data x available to call di-
rectly. The reason for this is that several
different data sets can have the some of
the same variable names.

detach(x) Detaches, or makes “invisible”, the vari-
ables names in the data x. See attach().

x =

read.csv(’file.csv’)

Reads in the CSV file file. Do
not forget to put the proper path
in front of the file names, e.g.
’C:/Documents/mydata/file.csv’.
R cannot guess where you have put your
file.

source(url("http://wmbriggs.com/book/Rcode.R"))

This loads the book’s R functions into
memory so they are ready to use. You can
also download Rcode.R and access it from
your favorite directory. This is safer be-
cause you do not have to be online. Try
source("c:/mydirectory/Rcode.R").

Basic graphics

Command Function
boxplot(y∼x) Creates several boxplots of y by the dif-

ferent factors of x: x must be a categorical
variable for this to work best. You can al-
ways leave off the ∼x bit.

density(x) Forms an estimate of the density of ap-
proximately continuous data. Use with
plot(density(x))

hist(x) Form a discrete histogram of the data.
plot(x) Plots the object x; also try plot(x,y).

This function also takes an enormous
number of arguments that you can use to
make the picture prettier.

stem(x) Plots a stem-and-leaf.

Summaries & Classical estimation

Command Function
summary(x) Compute min, max, median, and mean,

plus counts the missing values of x. Also
prints out the summary of regression
models and so on. Always try this com-
mands on any object.

table(x) Computes a count of each level of x.
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prop.table(table(x)) Computes a percent, or proportion, of
each level of x.

mean(x,na.rm=T) Computes the mean and removes missing
values, the na.rm=T is optional.

sd(x,na.rm=T) Computes the mean and removes missing
values.

binom.test(k,n) Estimate the binomial parameter θ (with
standard confidence interval).

Modern estimation

Command Function
newdbinom(x, n new,

k old, n old)

Probability distribution for new observ-
ables for binomial distribution given old
data and guess of how many new data
points there will be n new.

newpnorm(x, x old) Probability distribution for new observ-
ables for normal distribution given old
data.

Classical testing

Command Function
t.test(y∼x) This is the t-test written in regression

form. You can also write it the next way.
t.test(y, x), paired

= T

This is the same thing but tells R the data
are paired like in the Army training exam-
ple. Leave off paired=T is the data are not
pairs.

prop.test(c(k1 ,

k2), c(n1, n2))

This proportions test where you plug in
the number of successes in the first group
k1 then the second k2, followed by the
sample size in each group.

Classical linear models

Command Function
fit = glm(y∼x1+x2) Standard linear regression for the formula

yi = β0 +β1x1,i +β2x2,i. To get the inter-
action term β3x1,ix2,i change the syntax
to x1*x2. The results are stored in fit.

fit = glm(y∼x1+x2,
family=binomial)

Same thing except gives logistic regres-
sion.

summary(fit) Shows the results of the linear models.
confint(fit) Gives the classical 95% confidence inter-

vals of the linear models.
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Modern linear models

Command Function
glm.posterior(fit) A textual and graphical summary of the

posterior distribution of the linear models
parameters. fit is from the output of glm
above.

s1 = obs.glm(fit,

newdata)

Creates the posterior distribution
of the future observables given a
scenario newdata. Whatever vari-
ables went into the linear model
must be in newdata; e.g. newdata=

data.frame(White.Blood.Count=9.5,

Age=22, n=1000). The scenario is stored
in s1. Two scenarios may have the same
newdata but have different fits resulting
in two different runs of glm; e.g. fit1 =

glm(y ∼ x1) and fit2 = glm(y ∼ 1),
which is the usual “null” model.

obs.glm.prob(s1, s2) A textual and graphical summary of the
posterior distribution of the linear’s mod-
els future observables. Gives the probabil-
ity that a new observation from scenario
1 (s1) is less than a new observation from
scenario 2 (s2). Also shows the most prob-
able value under each scenario and the
probability that s1 and s2 is greater than
the most probable value for s1.

skill(fit1 ,fit2) Gives the score and skill score comparing
how well the models fit1 and fit2 fit
the observed data, fully accounting for the
uncertainty in the observables.
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