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Summary: The problem of inference for the proportion of successes in a

finite populations is given much less attention in both inference and appli-

cation courses than the related infinite population problem. However, the

finite population problem is both interesting and useful in its own right

while also providing insight into various approaches for the infinite popula-

tion case. This article explores exact Bayesian inferences for understanding a

finite population proportion. The derivations of both posterior and posterior

predictive distributions provide excellent insight for students regarding the

updating nature of the Bayesian paradigm. The novel approach presented

for deriving the posterior predictive distribution also allows students to over-

come difficult combinatorial calculations. Accessible limiting arguments also

can be used to justify the use of flat priors in the infinite populations. Fi-

nally, the results may be compared to conventional inferences based upon

the use of finite population correction factors or exact frequentist intervals.

Key words: Binomial, Hypergeometric, Bayesian, Marginal Likelihood,

Posterior Predictive Distribution, Objective prior
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1 Introduction

The problem of inference for the proportion of successes in finite populations

is given much less attention than the related infinite population problem.

For example, there exists many studies that present practical approaches to

improving the accuracy of confidence intervals for the proportion of successes

in an infinite population, see Caffo and Agresti (2000); Brown et al. (2001).

Although inference for proportions in finite populations is less common, it is

still both important and interesting; see Wright (1992). Modern computing

power also relieves the tedium and effort required for finding exact answers.

The problem of inference in a hypergeometric distribution provides an

excellent opportunity to explore discrete distributions, learn about Bayesian

updating of information through posterior distributions, explore and under-

stand the derivation of a marginal distribution which is critical for normal-

ization of a posterior, and derive results for the infinite dimensional case

through straightforward limiting arguments.

The hypergeometric distribution is most frequently referenced as the null

distribution for Fisher’s exact test in 2× 2 tables; see Simonoff (2002). It is

also studied in the context of capture-recapture experiments where the goal

is to infer the size of the total population, N . In Section 2, we focus instead

on inference for the number of successes in a population of known size, often
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discussed historically in the context of studying defective items in a lot; see

Chung and Delury (1950). We show how to derive the posterior distribu-

tion on the total number of successes, which principally involves computing

the marginal distribution of successes given a flat prior. Once the poste-

rior has been computed, we compute the posterior predictive distribution

and discuss its utility in statistical inference. The simple derivation of the

posterior predictive distribution below is much more intuitive than earlier

derivations and allows us to test intuitive understanding of Bayesian reason-

ing. A somewhat surprising feature of the posterior predictive distribution

of the number of successes in a future sample is that it is independent of the

size of the population. The explanation of this phenomenon by Bose and

Kedem (1996); Bose (2004) is a bit advanced, so in Section 3, we analyze this

result with more elementary tools. We also investigate the limiting value of

the posterior distribution as the population and number of successes go to

infinity while the proportion of successes and failures is held constant. A

brief discussion of standard and Bayesian intervals is given in Section 4 and

the importance of predictive distributions is illustrated with an example.

2 Posterior and Predictive Distributions

Suppose we collect a sample of size n from a finite-population urn containing

N balls and wish to infer M , the number of successes (balls labeled “1”),
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given that we saw n1 successes in the sample. We use the notation n0

to denote failures, so that n1 + n0 = n. We parameterize the number of

successes as M = Nθ, with θ taking only one of the N + 1 discrete values of

the form i/N, i ∈ 0, 1, . . . N . The probability of seeing Nθ = j successes

is computed with the hypergeometric probability mass function

Pr(n1 = j|n, θ,N) =

(
Nθ
j

)(
N−Nθ
n−j

)(
N
n

) =

(
n
j

)(
N−n
Nθ−j

)(
N
Nθ

) (1)

for max[0, n + Nθ − N ] ≤ j ≤ min[n,Nθ]. The second expression can be

derived through direct manipulation and simplifies the expression slightly

in terms of Nθ.

Assume that we have reason to believe that no number of successes is

more likely than any other so that Pr(θ) = 1/(N + 1). Instead of a prior on

θ, we might choose to put one on Nθ. Given N , these quantities are 1-to-1

functions of each other, so we focus on θ. Incidentally, unlike continuous

distributions, the parameter here is observable.

After n balls have been removed, the posterior parameter distribution of

θ is produced in the obvious way:

Pr(θ =
j

N
|n, n1, N) ∝ Pr(n1|n, θ = j/N,N) Pr(θ|n,N)

=

(
n
n1

)(
N−n
j−n1

)(
N
n

) 1
N + 1

(2)

=
(
N − n
j − n1

)
β(j + 1, N − j + 1)

(n+ 1)β(n1 + 1, n0 + 1)
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for j = n1, n1 + 1, . . . , N −n0, and β(·) denotes the beta function. If n1 > 0

then Nθ can be no smaller than n1. Similarly, if n0 > 0 then Nθ can be no

larger than (N−n0). In particular, if n1 +n0 = N then Nθ = n1 as desired.

In real applications, it makes sense to focus on d = Nθ−n1, the number

of remaining successes. Replacing Nθ with d+ n1 in (2), we find,

Pr(d|n1, n,N) ∝ 1
n+ 1

(
n1+d
d

)(
N−n1−d
N−n−d

)(
N+1
n+1

) (3)

where d ∈ {0, . . . , N − n0}. Expression (3) presents the un-normalized pos-

terior in the form of a negative hypergeometric, which is simply a alternative

name for the beta-binomial distribution (Terrell, 1999).

Before we have removed any of the balls from the urn, we can compute

the prior predictive distribution of n1 in the initial sample. This quantity is

critical since it forms the normalization constant of the posterior distribution

in eq. (2). To derive this we simply sum over the possible values of θ in

expression (3) which is equivalent to summing a beta-binomial mass function

over its range. The result is

Pr(n1 = j|n,N) = 1/(n+ 1), j ∈ {0, . . . n} (4)

Note that under our prior, when n = 1, P (n1 = 1) = 1/2. That is, if we

reach in and grab out just one ball, the chance that it is a 1 or 0 is 1/2, no

matter what N is. Furthermore, if we grab n > 1 balls, the result says that

n1 is equally likely to be any result in {0, 1, . . . , n}, and is also independent
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of N . This is intuitive, since we began with all proportions θ being equally

likely a priori and have not yet collected data that suggests otherwise.

Given the original sample A whose size is now denoted by na, with n1a

the number of successes and n0a the number of failures, let a new sample

of size nb ≤ N − na be collected. We want to know the distribution of

successes, n1b, in this new sample. It is known that 0 ≤ n1b < Nθ − na.

Given d, the distribution of n1b is clearly hypergeometric.

This allows us to compute the posterior predictive distribution on n1b:

Pr(n1b|nb, n1a, na, N) =
N−na∑
d=0

Pr(n1b|d, nb, n1a, na, N) Pr(d|n1a, na, N)

=
N−na∑
d=0

(
nb
n1b

)(
N−na−nb
d−n1b

)(
N−na

d

) (
N − na

d

)
β(n1a + d+ 1, n0a + (N − na)− d+ 1)

β(n0a + 1, n1a + 1)
(5)

Direct calculation of this expression looks quite daunting. Bratcher et al.

(1971) computed the sum analytically using combinatorial identities. How-

ever, using simple Bayesian arguments the following result is easily achieved:

Theorem 2.1. The sum in eq. (5) is exactly

(
nb
n1b

)
β(n1a + n1b + 1, n0a + n0b + 1)

β(n1a + 1, n0a + 1)
(6)

which is a beta-binomial distribution with parameters (nb, na1 + 1, na0 + 1).

Proof. Assume that a sample A ∪ B of size na + nb ≤ N is collected with

n1a + n1b successes observed. The posterior distribution for d can easily be
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derived from eq. 3 giving,

Pr(d|na+nb, n1a+n1b, N) =
(
N − na − nb
d− n1b

)
β(d+ n1a + 1, N − (d+ n1a) + 1)
β(n1a + n1b + 1, n0a + n0b + 1)

(7)

Next, consider an alternative route to the same sample. Suppose sample A

is collected first and the posterior in eq. (3) is computed. This posterior

p(d|n1a, na, N) is then updated using the likelihood from the new sample, B.

That is, the initial posterior becomes the prior and our new posterior dis-

tribution p(d|n1a, n1b, na, nb, N) is computed based upon the data collected

in sample B. Since both posteriors integrate the same sample and prior

information, they must be the same.

Because the posterior predictive distribution is simply the normalizing

constant of this second sequentially defined posterior distribution, it follows

from Bayes theorem that

Pr(n1b|nb, n1a, na, N) =
Pr(n1b|nb, d, n1a, n0a, N) Pr(d|na, n1a, N)

Pr(d|na + nb, n1a + n1b, N)
(8)

The result follows from taking this ratio.

In the next section we discuss the surprising result that the predictive

distribution is independent of N . This means the result also holds in the

limit as N → ∞. Hence, it matches the conventional beta-binomial result

which is typically obtained by combining a binomial predictive distribution

with a beta posterior.
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3 A Curious Property of the Predictive Distribu-
tion

Bratcher et al. (1971) derives (8) and notes that it is identical to the infinite

population result based on beta-binomial Bayesian inference. This highlights

the fact that the predictive distribution does not depend upon the overall

population size N , which implies that two persons using totally different

assumptions regarding population size but the same methodology would

arrive at the same solution. Bose and Kedem (1996); Bose (2004) use the

concept of recursive generation of a distribution to prove that under certain

classes of priors—which include the discreet uniform—the joint distribution

of (n1a, n1b) is independent of population size N . While the proof offered

is accessible, we attempt to provide a somewhat more intuitive result based

upon the Bayesian argument presented in Proof 2.1.

Rewriting our earlier expression, and letting δ = (na, nb), then

Pr(n1b|n1a, δ,N) =
Pr(n1b|d, n1a, δ,N) Pr(n1a|d, na, N) Pr(d|N)/Pr(n1a|δ,N)

Pr(n1a + n1b|d, n1a, δ,N) Pr(d|N)/Pr(n1a + n1b|δ,N)

=
Pr(n1a, n1b|d, δ,N) Pr(n1a + n1b|δ,N)

Pr(n1a + n1b|d, δ,N) Pr(n1a|δ,N)

= Pr(n1b, n1a|n1a + n1b, d, δ,N)/Pr(n1a|n1a + n1b, δ,N) (9)

In the case of a flat prior, the conditional Pr(n1a|n1a + n1b, δ,N) is just

(na + 1)/(na + nb + 1). The first term, although nominally conditional on

both d and N , is also conditional on the sum of successes; once this sum is
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known (along with samples sizes), then information about the overall pop-

ulation (N, d) adds no information, so that the joint distribution is simply

a hypergeometric.

When predicting the number of future successes given the results of a

previous sample, intuition suggests removing the initial sample and imag-

ining what would happen when drawing a new sample from the remaining

population. One would naturally assume that the probability of success

depends upon N − na, which is the size of the remaining population. The

decomposition of the joint distribution in (9) suggests a different situation.

More accurately, we are selecting a subset of size na+nb from the population

which contains n1a + n1b (n1b being fixed by the hypothetical posed when

asking P (n1b|n1a, δ,N). The joint distribution gives the probability of see-

ing n1a of these successes in the first sample and n1b in the second sample,

which follows a hypergeometric distribution. The conditional distribution

follows after dividing by the conditional distribution that n1a successes are

observed in the first sample given the total number of successes. Key to

understanding this is that when we draw the total sample of size na + nb

we assume that the successes will be distributed homogenously in both sub-

samples A and B. Hence, the joint, and conditional distributions will be

maximized when the proportions n1a/na = n1b/nb.

A well known limiting argument relates the beta-binomial distribution
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(2) with the standard binomial. The same argument can be used to find the

limiting posterior distribution of θ as m→∞.

Theorem 3.1. The function given in eq. (2) converges to the cumulative

beta distribution B(n1 + 1, n0 + 1) in the limit as m→∞.

Proof. A very intuitive result (Ross, 1988) states that as m and mθ get very

large in relation to the sample size n, the consequences of sampling without

replacement are diminished and the hypergeometric distribution behaves

increasingly like a binomial distribution with sample of size n and probability

θ. Applying this result to derive the limiting posterior distribution for θ we

can write,

lim
m→∞

Pr(θ|m,n0, n1) = lim
m→∞

(
n
n1

)(
m−n
mθ−n1

)(
m
mθ

)
Again, following Ross (1988), we note that the righthand side can be

lim
m→∞

[(
n
n1

)(
m−n
mθ−n1

)(
m
mθ

) ]
= lim

m→∞

(
n

n1

)
(mθ)!

(mθ − n1)
(m−mθ)!

(m− n− (mθ − n1)
/

m!
(m− n)!

= lim
m→∞

(
n

n1

)
mθ

m

mθ − 1
m− 1

. . .
mθ − n1 + 1
m− n1 + 1

×

m(1− θ)
m− n1

m(1− θ)− 1
m− n1 − 1

. . .
m(1− θ)− (n− n1 − 1)
m− n1 − (n− n1 − 1)

=
(
n

n1

)
θ(n1+1)−1(1− θ)(n−n1+1)−1 (10)

From this we see that the posterior distribution for θ is a beta distribu-

tion, β(k + 1, n− k + 1).
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We conclude that if n1 + n0 << m, for large m, the posterior on θ

follows a beta distribution with parameters n1 + 1, n0 + 1. This result

coincides with the standard infinite population problem with a “flat” prior

on θ, i.e. α = β = 1 in (10). The fact that in the finite sample case, some

values of θ ∈ [0, 1] are impossible after we have taken some data (drawn

some balls) contrasts with the infinite sample approximation, where the

parameter always has positive probability of being smaller or larger than

any given value in (0, 1). There is also 0 probability for the values {0, 1},

which are still possible in the finite case.

4 Teaching Students about Inference

[Emphasize inference and practical significance are united. Discuss two weld-

ing methods A and B(cheaper newer method.) Want to verify that B is just

as safe as A. How to compare these two, simulation or computer, analytical

would seem to be difficult. Emphasize differences with classical inferences

as well as conclusions from continuous posterior approximations.]

Bayesian and Frequentist confidence intervals for the number of successes

in a discrete sample are discussed by Steck and Zimmer (1968). The stan-

dard form of the upper 100(1−α) confidence interval is simply M −1 where

M is the smallest value of M = Nθ which satisfies

j∑
M=0

Pr(n1 = j|n,M,N) ≥ α M ≤ N − n (11)
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Interestingly, comparisons show that Bayesian intervals are highly depen-

dent upon the prior chosen and that the uniform prior distribution can be

significantly less conservative than the hypergeometric prior.

Burstein (1975) investigates frequentist inference and compares the use

of approximate intervals based on applying the finite population correction

factor to exact inferences in the case where the finite population size N

is not vastly larger than the sample n. Given standard binomial intervals

[L,U ], the finite population correction takes the form,

LFin = p̂− (p̂− L)[(N − n)/(N − 1)]1/2 (12)

UFin = p̂+ (U − p̂)[(N − n)/(N − 1)]1/2 (13)

(14)

The methodology used in Burstein (1975) is very easy to reproduce us-

ing modern computational resources and may provide a good exercise for

students. While the basic FPC is highly accurate if N > 1000, using a

continuity type correction, replacing p̂ with p̂ − .5/n in the lower case and

p̂+ p̂/n in the upper case, results in increased accuracy and more conserva-

tive intervals.

From an applied point of view, the posterior predictive distribution de-

serves more attention in contrast to intervals. The obvious advantage of

(posterior) predictive distributions is that they do not depend upon any un-
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known and unobservable parameters. They also directly address the ques-

tion that is of most interest, which is “What will actually be observed in a

new sample?” For example, Wright (1992) considers a situation in which an

inspector is trying to ensure that all the welds on a nuclear reactor are prop-

erly formed. Suppose that the number of welds, N = 20, is known. A small

number of welds, n = 5, are scheduled for testing, which is very expensive

and time consuming. After the sample is collected, and is found to have no

faults, we would like to know the probability the remaining N − n welds

contain a fault. A standard 95% frequentist upper confidence bound for the

actual number of defectives can be computed using the phyper command in

R-language and gives U = 10 while a 95% posterior interval for the number

of faults based upon eq. 2 is 9. Using the posterior predictive distribution

based on flat prior (from eq. (3)) we compute the probability of one or more

faults to be 71%.

Contrast this with a conclusion based upon a posterior computed by ap-

proximating the distribution for the number of faults with a binomial(n, θ)

and adopting a standard beta prior (with α = β = 1). Conjugate calcula-

tions give a beta posterior with hyperparameters (1, n + 1). This posterior

distribution is trickier because it only says something about an unobserv-

able parameter, θ. We know that there are N − n = 15 welds left. If none

are bad, the fraction of bad welds is, of course, 0. If one or more are bad
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then the fraction of bad ones is at least 1/15. So we can ask, what is the

probability that the posterior on θ is greater than this. The answer is 66%,

a sizeable difference.

Equally important is the two sample problem. Consider comparing the

numbers of faulty welds when using a standard welding method A versus a

newer, less expensive method B. We would like to verify that method B

is at least as effective as method A. A typical frequentist approach would

either use a two sample test of proportions, implicitly assuming that the

population is infinite, or might use Fisher’s exact test. In either case, a

conclusion that a test statistic is “statistically significantly” does not, and

could not, document how different the methods are and what any difference

means from a practical point of view (Briggs, 2008). A major advantage of

the predictive distribution is that there is no distinction between statistical

and practical because differences are measured on the observable scale, i.e

the actual difference in the number of defectives.

Continuing the example: it was desired to do a complete test of the new

welding method so all the welds on two reactors were checked. After the

testing, one more reactor will be ordered (the plant needs three), made by

either technique A or B. Which to buy? Let fA = 4 be the number of faulty

welds found in the first reactor and fB = 1 be the number in the second,

with both having taken a sample of n = N = 20 welds each. Extending the
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continuous approximation, with the parameters θA and θB being of interest,

the posterior probability that θA > θB is 91%. However, a better question

is, “Which technique, A or B, is likely to produce more faulty welds in the

next reactor ordered?” Since the number of welds is discrete and small, there

is a non trivial probability that the number of faulty welds are equal. That

is the case here, with an 8.6% chance of this occurring. (We note that this

probability cannot be calculated in the continuous case.) There is also a 79%

chance that the number of faulty welds using technique A will be larger than

those using technique B. Or a 79+8.6=88% chance that technique A has at

least as many faulty welds as technique B.

Does the 3% difference between the continuous approximation/parameter-

focused method make a difference? It might. It depends on the costs of

the reactors, the cost of repair, and so on. The main point is that the

parameter-focused method will always give an answer that is more certain

than observable-focused method. Which is another way of saying you will be

overconfident using the parameter-focused method when engaged in real-life

decisions.
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