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Abstract. Classical hypothesis testing, whether with p-values or Bayes
factors, leads to over-certainty, and produces the false idea that causes
have been identified via statistical methods. The limitations and abuses
of in particular p-values are so well known and by now so egregious,
that a new method is badly in need. We propose returning to an old
idea, making direct predictions by models of observables, assessing the
value of evidence by the change in predictive ability, and then verify-
ing the predictions against reality. The latter step is badly in need of
implementation.

Keywords: P-values · Hypothesis testing
Model selection · Model validation · Predictive probability

1 The Nature of Testing

The plain meaning of hypothesis testing is to ascertain whether, or to what
degree, certain hypotheses are true or false, or if a theory is good or bad, or
useful or not. This is not, of course, what that phrase means in frequentist or
Bayesian theory. Classical statistical philosophy has developed measures, such as
p-values and Bayes factors, which are not directly related to the plain meaning.
Yet the plain meaning is what all seek to know.

The relationship between a theory’s truth or goodness and p-values is non-
existent by design. The connection between a theory’s truth and Bayes factors is
more natural, e.g. Mulder and Wagenmakers (2016), but because Bayes factors
focus on unobservable parameters, they exaggerate evidence for or against a
theory (we demonstrate this presently). The predictive approach outlined below
restores, and puts into proper perspective, the natural goals of modeling.

The two main goals of modeling physical observables are prediction and
explanation, i.e. understanding the causes of the phenomenon of interest. With-
out delving too deeply into a highly complex subject, it should be obvious that
if we knew the cause or causes of an observable, we would write these down and
not need a probability model, see Briggs (2016). Probability models are only
needed when causes are unknown, at least in some degree. Though there is some
c� Springer Nature Switzerland AG 2019
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4 W. M. Briggs et al.

disagreement on the topic, e.g. Hitchcock (2016), Breiman (2001), and though
the reader need not agree here, we suggest that there is no ability for a wholly
statistical model to identify cause. Everybody agrees models can, and do, find
correlations. And because correlations are not causes, hypothesis testing cannot
find causes, nor does it claim to. At best, hypothesis testing highlights possibly
interesting relationships.

Now every statistician knows these arguments, and agrees with them to vary-
ing extent (most disputes are about the nature of cause, e.g. Pearl (2000)). But
the “civilians” who use the tools statisticians develop have not well assimilated
the arcane philosophy behind those tools. Civilians all too often assume that if
a hypothesis test has been “passed”, a causal effect—or something very like it,
like a “link” (a word nowhere defined)—has been confirmed. This is only natural
given the name: hypothesis test. This explains the overarching desire for p-value
hacking and the like. The result is massive over-certainty and a reproducibility
crisis, e.g. see among many others Begley and Ioannidis (2015); see too Nosek
et al. (2015).

This leaves prediction. Prediction makes sense and is understandable to
everybody, and best of all opens all models to verification, to real testing. A
hard check against reality is not the usual treatment statistical models receive.
This is a shame. The many benefits of prediction are detailed below.

There is not much point here adding to the critiques of p-values. Not every
argument against them is well known, but enough are in common circulation
that even their most resolute defenders are given pause, e.g. Nguyen (2016),
Trafimow and Marks (2015). The only good use for p-values is the one for which
they are designed. Calculating the probability that certain functions of data will
exceed some value supposing a specified probability model holds. About whether
that, or any other, model is good, true, or useful, the p-value is utterly silent.
It’s funny, then, that the only uses to which p-values are put are on questions
they can’t answer.

The majority—which includes all users of statistical models, not just careful
academics—treat p-values like ritual, e.g. Gigerenzer (2004). If the p-value is
less than the magic number, a theory has been proved. It does not matter that
frequentist statistical theory insists that this is not so. It is what everybody
believes. And the belief is impossible to eradicate. For that reason alone, it’s
time to retire p-values.

As stated, Bayes factors come closer to the mark, but since they are stated
in terms of unobservable parameters, their use will always lead to over-certainty.
This is because we are always more certain of the value of parameters than we are
of observables. This is obvious since the posterior of any parameters feeds into
the equations for the predictive posterior of observables. Take an easy example.
Suppose we characterize the uncertainty in the observable y using a normal with
known parameters. Obviously, we are more uncertain of the observable than
the parameters, which are known with certainty. If we then suppose there is
uncertainty in the parameters (perhaps supplied by a posterior, or by guess), we
have to integrate out this new uncertainty in the parameters, which increases the
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The Replacement for Hypothesis Testing 5

uncertainty in the observable. For these reasons, we do not comment further on
Bayes factors, though we do use what is usually considered an objective Bayes
framework, suitably understood, to produce predictions. Frequentist probability
predictions can also be used, but with difficulties in interpretation.

We take probability to be everywhere conditional, and nowhere causal, in the
same manner as Briggs (2016), Franklin (2001), Jaynes (2003), Keynes (2004).
Accepting this is not strictly necessary for understanding the predictive position,
but it is for a complete philosophical explanation. This philosophy’s emphasis on
observables and measurable values which inform observables is also important.

2 Predictive Assessment

All quantifiable probability models for observables y can fit this predictive
schema:

Pr(y ∈ s|X, D, M) (1)

where y is the observable of interest (the dimension can be read from the con-
text), s a subset of concern, M is the evidence and premises that suggest the
model form, D is optionally old (or assumed) measurements of (y, x) and X
optionally represents new or assumed values of x. It is well to stress that proba-
bility, like logic, does not restrict itself to statements on observable propositions.
But scientific models do revolve around that which can be measured. Thus, the
only type of models we discuss here will be for observable, i.e. measurable, y.

It is also worth emphasizing M is usually a complex, compound proposition
that includes everything used to judge the model. Statisticians have developed
a shorthand that works well with mathematical manipulations of models, but
which masks important model information. Since nearly all models in practical
use are assigned ad hoc, the masking emboldens the false belief the model used
in an application is the correct model, or at least one “close enough” to the true
one. This over-emphasizes the importance of hypothesis testing, leading to over-
certainty that causal, or semi-causal “links”, have been properly identified. And
this in turn has led to a most unfortunate non-practice of model verification.
It is rare to never that the vast army of published models ever undergo testing
against the real world. About that subject, more below.

The majority of probability models follow one of two basic forms. Paradig-
matic examples:

MD = “A 6-sided object with sides labeled 1–6, which will be tossed, after
which one side must show”. The observable y is the side, with s = 1 · · · 6. Then
Pr(y = i|M)1/6,∀i. About why this deduction holds, and about why we believe
we can deduce probability and why we do not believe probability is subjective,
we relegate to Briggs (2016).

Mtemp = “The uncertainty of tomorrow’s high temperature quantified by a
normal distribution, whose central parameter μ is a function of yesterday’s high
and an indicator of precipitation”; i.e. a standard regression.

MD has no parameters and requires no old observations. Its general form is
MP = P1P2 · · · Pm, where each P is a premise as in a logical argument, and the
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6 W. M. Briggs et al.

model itself is a conjunction of these premises. Each of the P may be arbitrarily
complex.

Mtemp is a parameterized model typically requiring old observations, and
in Bayesian analysis evidence on the uncertainty of the parameters, i.e. prior
distributions. The evidence suggesting the priors is assumed to be part of Mtemp.
Of course, there may, and even must, be some number of premises P included in
parameterized models. The one that must be present is the one identifying the
parameterized model. E.g. P = “Uncertainty in the observable will be quantified
with a normal distribution”. This P is almost always ad hoc. This does not mean
not useful.

Classical hypothesis testing in frequentist or Bayesian terms is usually applied
to parametric models, with the goal of model selection, a potentially confusing
term, as we shall see. The general idea is simple. In its most basic form, two
models are proposed, parameterized or not, both identical except one will have
one less premise or parameter. For example:

MPa
: P1P2 · · · Pm−1Pm (2)

MPb
: P1P2 · · · Pm−1 (3)

Mθ1 : μ = θ0 + θ1x1 + θ2I(x2) (4)
Mθ2 : μ = θ0 + θ1x1 (5)

where in the first set of comparisons MPb
has one fewer premise than does MPa

.
In the second set of comparison x1 might be, from the example above, yesterday’s
high temperature, and I(x2) the indicator of precipitation. The ordering of more
to less complex models does not, of course, matter.

Predictive selection for premise-based models is simplicity itself. But don’t
let its simplicity fool you. It contains the very basis of how models are actually
built. Calculate

Pr(y ∈ s|X, D, MPa
) = p + δ (6)

Pr(y ∈ s|X, D, MPb
) = p (7)

Using the nomenclature of Keynes, premise Pm is relevant to y at s if δ �= 0
(the obvious restrictions on the values of p and δ apply); otherwise it is relevant.
Using the example above with MD remaining the same, and letting MD+1 = MD

& “Candy canes have peppermint flavoring.” Then

Pr(y ∈ s|MD+1) = 1/6 + 0 = 1/6,∀s (8)
Pr(y ∈ s|MD) = 1/6,∀s. (9)

Obviously, the flavoring of candy canes is irrelevant to knowing which side of a
die will show. At no value of s was δ non-zero. The premise is therefore rejected.

The example is silly, but it highlights an important truth. All models are built
like this. Scores of irrelevant premises are rejected at the outset, with little or no
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The Replacement for Hypothesis Testing 7

thought. This is the right thing to do, too. Yet it is the reason the premises are
rejected that is important. Model builders reject premises because they know
the probability of the observable y at some measurable x will not change. If
you like, we can say that the hypothesis that the premise is relevant has been
rejected—and rejected absolutely.

Hypothesis testing, then, begins well before any p-value is calculated or even
data collected. It does not reach any level of formality until well down the road.
This is interesting because if people were truly serious about the theory behind
p-values, to remain consistent with that theory, p-values (and Bayes factors)
should be used to rule out every hypothesis not making it into the final model.
Now every is a lot; indeed, it is infinite. Since any hypothesis not making it into
the final model must be rejected in the formal way, true p-value and Bayes factor
believers would thus never finish testing. No model would ever get built in finite
time.

What we are proposing is an approach which is everywhere consistent. And
which produces no paradoxes.

In the case of comparing parameterized probability models, there is uncer-
tainty in which model is “better”. But there is no uncertainty in calling any
model true, if that word is meant in the causal sense. None but the strictly
causal (perfectly predictive) model is true. If we knew the actual cause of y, or
what determines the value of y, then we would not need a probability model.
Causal models are not impossible, or even rare. Physics is awash in causal and
deterministic models (to know the cause is greater than to know what determines
a value).

Most, or even all, statistical models are ad hoc. In the temperature example,
it is obvious many other parameterized, and even unparameterized, models could
have been used to express uncertainty in y. Not just in the sense that extra terms
could be added to the right hand side of the regression, but entirely different
model structures. Normal distributions do not have to be used, for instance. The
model need not be linear in the parameters. The possibilities for ad hoc models
are limitless.

That is what makes talk of “true” values of the parameters curious. Since
statistical models are ad hoc and not true in any causal sense, and since nearly all
models do not specify the precise and total circumstance of an observable (i.e. all
auxiliary premises, see Trafimow (2017)), it is vain to search for “true” values of
parameters. Even at a hypothetical, never-will-be-reached limit. Again, physics
comes closest to an apt understanding of true values of parameters, because
there carefully controlled experiments can be run that delineate all the (known)
possible causal factors. In these limited circumstances, it makes more sense to
speak of true parameter values. Parameters in this sense often have physical
meaning, at least by proxy. But, again, this does not hold for the vast majority
of probability models.
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8 W. M. Briggs et al.

Predictive selection for parametric models is as easy as above. Calculate

Pr(y ∈ s|X, D, M1) = p + δ (10)
Pr(y ∈ s|X, D, M2) = p (11)

Assume M1 is the model with the greater number of parameters. Again, we
assume the obvious numerical restrictions of p and δ. If at s, and given X and D,
δ = 0, the parameter(s) in M1, and therefore the measurements associated with
those parameters, are irrelevant to the uncertainty of y. These X, and these
parameters, are therefore not needed in the model. Removing them does not
change the probability. The models in (10) are predictive, meaning the uncer-
tainty in the parameters given by priors is integrated out. Yet even frequentists
can use this method, as long as probability predictions can be made from the
frequentist model.

If at any s, for the given X and D, δ �= 0, then the X and its parameters
are relevant. Whether to keep the extra parameters becomes a standard prob-
lem in decision analysis. A relevant parameter important to one decision maker
can be unimportant to another. There can be no universal value of δ useful
in all situations, like there is with the magic number for p-values. As should
be clear, relevance depends on s and on everything on the right hand side of
the probability equation. That means any change on the right hand side might
change the measure of relevance. That accords with common sense: change your
information, change your basis of judgment.

In practice, on a per-model, per-decision basis, a δ is chosen, which may
depend on s, below which measurements are decided to be unimportant, and
above which are important. Measurements, and their associated parameters, are
kept or discarded accordingly.

An additional advantage of this approach is that no parameter estimates
are needed, or even desired. Parameters are not in any case observable. The
models are already ad hoc anyway, so focusing on parameter estimates, either
as a Bayesian posterior or a frequentist point estimate with confidence interval,
produces over-certainty in any X’s importance. The predictive approach thus
unifies testing and point estimation.

Not only can (10) be used in intra-model selection, but it is ripe for estimating
the probabilistic importance of each X. It will often be found that a model with
multiple parameters will show a wee p-value and large (relative) point estimate
for one parameter, and a non-publishable p-value and small point estimate for
the second parameter. But when (10) is employed, the order of importance is
inverted. Changing the value of X for the classically “weaker” parameter will
produce larger variations in probability of y ∈ s, especially for values of s thought
crucial in the problem at hand.
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The Replacement for Hypothesis Testing 9

3 Examples

3.1 Example 1: Product Placement Recall

We begin for the sake of clarity with the simplest of examples. Results of a
survey to relate ability to recall product placement in theater films by movie
genre (Action, Comedy, Drama) and sex were asked on 137 people, each giving
a response (a score) with the number of correct recalls in the discrete interval 0–6,
Park and Berger (2010). The data were initially analyzed using null hypothesis
significance testing. The conclusion of the authors was “Results suggest that
brand recognition is more common in drama films.”

An ordinary regression in R on the score by sex (M = 1, or 0) and movie
genre was run, producing the following ANOVA table (sans hyperventilating
asterisks).

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.4994 0.1930 18.134 <2e-16
M1 0.3952 0.2489 1.588 0.1147
GenreComedy 0.4087 0.2712 1.507 0.1342
GenreDrama 0.7077 0.2792 2.535 0.0124

The p-values for sex (difference) and Comedy were larger than the magic
number. Some authors would at this point remove sex from the model. The
p-value for Drama was publishable, hence the conclusion of the authors.

Predictive probabilities of the full model were calculated, assuming standard
out-of-the-box “flat” priors. Posteriors on the parameters were first calculated,
then these were integrated out to produce the predictive posterior of the observ-
able score, see Bernardo and Smith (2000). The results would, of course, change
with a different prior; but so would they change with a different model. We are
not recommending this model, and certainly not recommending flat priors; we
are only showing how the predictive approach works in a common situation.

There is a bit of difficulty in creating predictive probabilities, because the
scores can only take the values 0–6, but the standard normal regression model
produces predictive probability densities along the continuum. Indeed, the model
produces predictions of positive probabilities for values of scores less than 0 and
greater than 6, scores that will never be seen (they are impossible) in any repeat
of the experiment. We elsewhere call the assignment of positive probability to
impossible events probability leakage, Briggs (2013). It usually shows up when
regression models do not make good approximations and when the observable
lives in a limited range, or when the observable’s discreteness is stark.

In this case, for males, the predictive probabilities for scores greater than 6
are 0.06 for Action, 0.1 for Comedy, and 0.15 for Drama (these are probabilities
for known impossible values). In other words, given the person is a male assessing
a Drama, the model predicts a probability of 0.15 for new scores greater than
6. For females, the numbers are 0.03, 0.06, and 0.09 respectively. Not small
numbers. For scores less than 0, the predictive probabilities are for men are all
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10 W. M. Briggs et al.

less than 0.001; for women the largest is 0.003. Whether any of these numbers
is important depends on the decisions to which the model is put, and not on
whether any statistician thinks them small or large. About these decisions, we
are here agnostic.

The next decision is how to turn the predictions which are over the real
line to predictions of discrete observable scores. One way of doing this, which
is not unique, is to calculate the predictive probability for being between 0 and
0.5, and assign that to a predictive probability of score = 0; next calculate the
predictive probability for being between 0.5 and 1, and assign that to a predictive
probability of score = 1; and so on. The probability of 5.5 to 6.5 can be assigned
to score = 6, with the remainder being left to leakage, or everything greater than
5.5 can be assigned to score = 6; correspondingly, everything less than 0.5 can
be assigned score = 0. Now all this rigmarole would not have been necessary
if a model which only allowed scores 0–6 were used (perhaps a multinomial
regression). But our purpose here is not to find terrific or apt models; we only
want to explain how to use the predictive approach for models people routinely
use.

It is crucial to understand that in creating predictive probabilities, as in
Eq. (6), the model must be fully specified in each prediction. In other words, we
created a model of sex and genre because we thought these measurements would
change the uncertainty in the score, therefore for each and every prediction we
make, we must specify a value of sex and genre.

Figure 1 shows the predictive probability for men for each genre. Clearly, the
difference in these probabilities are non-zero, hence δ �= 0; so, genre is relevant to
uncertainty in score. The differences in probabilities clearly depends on the level
of score (the s), ranging from about 0.001 (in absolute values) for s = 1, up to
0.14 for s = 6. Again, whether these differences are important depends on the
decisions to which the model will be put. Supposing for the sake of argument a
δ = 0.05 (a familiar number!) to indicate importance, then there is no important
differences in probabilities between Action and Comedy for scores of 0–2 and
4–5 but there are for scores of 3 and 6. The p-value would lead to the decision
of no difference between Action and Comedy. But with our chosen δ, there is a
clear difference in importance.

Now the same plot (or calculations: visual inspection is not necessary) should
be done for females by genre, and the differences assessed there too. We skip that
step, noting that the important differences exist here, too, and for different scores
for the genres. We instead show Fig. 2, the differences in sex at the Drama genre.
The differences (in absolute value) are between 0.002 and 0.08. The importance
δ is exceed at scores of 3 and 6.

Again, the p-value for sex was not wee, and sex might have been dropped
from the model. The important differences noted for Drama were also found for
Comedy, but not for Action, though these were not noted by the p-values.

This level of detail in an analysis won’t always be needed. Instead, tables like
the following can and should be presented. Plots and summaries may of course
be better, depending on the situation. Here there are two different regression
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Fig. 1. The days on which the interested events occur for DTAC

Table 1. Probabilities (rounded to nearest hundredth) for scores 0–6 for the genre
Drama, with and without considering sex, in two separate regression models.

Sex s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Either 0.00 0.01 0.06 0.17 0.28 0.27 0.20

Male 0.00 0.01 0.05 0.15 0.27 0.28 0.25

Female 0.00 0.02 0.08 0.20 0.29 0.25 0.16

models, the first without sex and the second with. Readers are free to make
decisions based on their own δs, which might differ from the authors’.

3.2 Example 2: Professor’s Salaries

This next example shows the flexibility of the predictive method, and its poten-
tial for partial automation. Full automation of analysis is not recommended for
any model, except in special circumstances. Automation can cause one to forget
limitations.

matt@wmbriggs.com



12 W. M. Briggs et al.

Fig. 2. Predictive probability of score for men and women for the Drama genre.

Nine-month salaries for 2008–2009 were collected on 397 academics at various
ranks for a college in the USA for two departments A and B “roughly correspond-
ing to theoretical disciplines and applied disciplines, respectively”, quoted from
Fox and Weisberg (2011). Faculty sex, years since PhD and years of service were
also measured. The minimum measured salary was $57,800 and the maximum
was $231,5000, proving at least one of us is in the wrong job.

Obviously, we use this data to make predictions of people not in this data
set, because we already know all we can about the salaries of people we have
already measured.

That is, we desire naturally to make predictions.
Here is the ordinary ANOVA table:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 78.8628 4.9903 15.803 < 2e-16
rankAsstProf -12.9076 4.1453 -3.114 0.00198
rankProf 32.1584 3.5406 9.083 < 2e-16
disciplineB 14.4176 2.3429 6.154 1.88e-09
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The Replacement for Hypothesis Testing 13

yrs.since.phd 0.5351 0.2410 2.220 0.02698
yrs.service -0.4895 0.2119 -2.310 0.02143
sexMale 4.7835 3.8587 1.240 0.21584

The standard ANOVA tells us little about predictions. That is easily reme-
died in Table 2, which we label the predictive “ANOVA” table. It uses the same
regression model with (again) “flat” out-of-the-box priors. It shows the central
(most likely) estimate for the condition noted, and which holds all other mea-
surements fixed at their observed median values or base levels (to be defined
below). The categorical variables are stepped through their levels, while the
others step through the first, second, and third observed quartiles. Any other
values of special interest may of course be substituted, but we leave these to
demonstrate how an automatic analysis might look.

Table 2. Predictive “ANOVA” table for salaries.

Variable Level Central Salary ($1,000s) Pr(Salary > base level)

rank AssocProf 101 0.5

rank AsstProf 88.6 0.343

rank Prof 134 0.844

discipline A 119 0.5

discipline B 134 0.675

yrs.since.phd 5 125 0.5

yrs.since.phd 21 134 0.606

yrs.since.phd 40 144 0.719

yrs.service 3 140 0.5

yrs.service 16 134 0.421

yrs.service 37 123 0.302

sex Female 129 0.5

sex Male 134 0.56

This Table also shows the predicted probability that a person holding these
attributes would have a higher salary than a “base level” person. The base level
is not unique and can be user specified as a particular level of interest. Here we
take the first level of all other categorical measures as ordered (alphabetically)
by R. The first level of rank is “AssocProf”, with “AsstProf” coming after,
alphabetically. The non-categorical measures take as base their observed first
quartile values.

For example, the predicted most likely salary for an Associate Professor in
discipline B (the median), and male (also median), with 21 years since PhD and
16 years of service is $101 thousand. The probability another person at the base
level, which in this case is a person with the same attributes, is, as expected, 0.5
(in this model, the posterior predictive distributions are all symmetric around
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14 W. M. Briggs et al.

the central value). We next hold all these attributes constant, but change the
rank, so that we now have a new male Assistant professor in discipline B with
21 years since PhD and 16 year service. The probability this new man has a
higher salary is 0.34, meaning, of course, a man with the higher rank has a
probability of 0.66 of having a higher salary.

These tables take only a little getting used to, and they are easily modified, as
a standard ANOVA is not, for questions interesting to decision makers. Relevance
can be picked off the table: any probability differing from 0.5 shows relevance,
at least for the levels specified. Direct information about the observable is also
prominent.

This table does not obviate a fuller analysis, as was done above in the first
example. Plots and tables of the same sort can and should be made. For example,
as in Fig. 3.

Fig. 3. Predictive probability differences between men and women in discipline B for
new Assistant Professors in black (0 years of service, 1 year since PhD) and for seasoned
Professors in red (24 years of service, 25 years since PhD). Probabilities are calculated
every $5,000.

This shows the predictive probability differences between men and women in
discipline B for new Assistant Professors in black (0 years of service, 1 year since
PhD) and for seasoned Professors in red (24 years of service, 25 years since PhD).
Probability differences are calculated every $5,000. Most of these differences are
0.01, or less. The largest difference was for new hires at a salary lower than was
observed. This implication is that while there were observed differences in salaries
between men and women, the chances are not great for seeing them persist in
new data. At least, not for individual salaries. Calculating the differences over
larger “block” sizes of salaries, say, every $10 or $15 thousand would show larger
differences.
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4 The Conclusion Lies in Verification

The predictive approach does not solve all modeling ills. No approach will. It
reduces some, but only some, of the excesses in classical hypothesis testing.
Although we advise against a universal, one-size-fits-all value of δ, all experience
shows such a value will be picked. Doing so makes model selection and presenta-
tion automatic. People prefer less work to more. The predictive approach clearly
entails more work than standard hypothesis testing in every aspect. As such,
there will be reluctance to use it. It also does not provide answers that are as
sharply defined as hypothesis testing. And people crave certainty—even when
this certainty is exaggerated, as it is with classical hypothesis testing. Every
statistician knows how easy it is to “prove” things with p-values.

Any approach that does not add model verification to model selection is
doomed to failure. Models must be tested against reality. It is not at all clear
how to do this with classical hypothesis testing. As said above, the idea a “test”
has been passed gives the false impression the model has been checked against
reality and found good.

True verification is natural using the predictive approach. Models under the
predictive approach are reported in probability form. Advanced training in sta-
tistical methods are not needed to understand results. The models reported in
Table 1 require no special expertise to comprehend. These are the (conditional)
probabilities of new scores that might be observed, perhaps depending on the
sex of the participant. “Bets” (i.e. decisions) can be made using this table. Here
the standard apparatus of decision analysis comes into play in choosing which
probabilities are important, and which not. If the model is a good one, the
probabilities will be well calibrated and sharp, when considered with respect to
whatever bets or decisions that are made with it.

Anybody can check a predictive model (given they can recreate the original
scenarios). The original data is not needed, nor the computer code used to gen-
erate it. The model is laid bare for all to see and test. Limitations and strengths,
especially for controversial and “novel” research, will quickly become apparent.

How best to do verification we leave to outside authorities. This list is far
from complete, but a good place to start is here: e.g. Gneiting and Raftery
(2007), Briggs and Zaretzki (2008), Hersbach (2000), Wilks (2006), Briggs and
Ruppert (2005), Briggs (2016), Gneiting et al. (2007). The idea is basic. Produce
predictions and compare these using proper scores against observations never
used or seen in any way before. This is the exact way civil engineers test models of
bridges, or electrical engineers test models of cell phone capacity, etc. The “never
used” is strict, and thus excludes cross validation and other approaches which
reuse or “peek” at verification datasets when building a model. It’s not that
these methods don’t have good uses, but that the will always inflate certainty
in the actual value of a model.

Verification, like model building is not exact, and cannot be. We must guard
against the idea that if a theory has passed whatever test we devise, we have the
best or a unique theory. Verification is not proof. Quine and Duhem long ago
showed theories or models besides the one under consideration and testing could

matt@wmbriggs.com



16 W. M. Briggs et al.

equally well explain any set of observed (contingent) data, Quine (1953), Duhem
(1954). And when testing, the auxiliary assumptions (all implicit premises) of a
model can be difficult or impossible to disentangle; see Trafimow (2009), Trafi-
mow (2017) for a discussion. What can be said is that given past good perfor-
mance of a model, and taking care the conditions in all explicit and implicit
premises are also met, it is likely the model will continue to perform well.
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