Coles,, S. (2001). An introduction to statistical modeling of extreme values. London, England: Springer.

Cunnane,, C. (1978). Unbiased plotting position. Journal of Hydrology, 37(3–4), 205–222.

Fisher,, R., & Tippett,, L. (1928). Limiting forms of frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180–190.

Fréchet,, M. (1927). Sur la loi de probabilité de l`écart maximum. Annales de la Société Polonaise de Mathématiques, 6, 93–126.

Gaume,, E. (2006). On the asymptotic behavior of flood peak distributions. Hydrology and Earth System Sciences, 10(2), 233–243.

Gnedenko,, B. (1943). Sur la distribution limite du terme maximum d`une série aléatoire. Annales de Mathématiques, 44, 423–453.

Halbert,, K., Nguyen,, C., Payrastre,, O., & Gaume,, E. (2016). Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. Journal of Hydrology, 541, 90–98. https://doi.org/10.1016/j.jhydrol.2016.01.017

Hershfield,, D., & Kohler,, M. (1960). An empirical appraisal of the gumbel extreme value procedure. Journal of Geophysical Research, 65(6), 1737–1746.

Hosking,, J. (1990). L‐moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B, 52, 105–124.

Hosking,, J., & Wallis,, J. (1997). Regional frequency analysis: An approach based on l‐moments. Cambridge, England: Cambridge University Press. ISBN 0‐521‐43045‐3.

International Commission on Large Dams. (2014). Integrated flood risk management, bulletin 156. Author.

Klemes,, V. (1988). The improbable probabilities of extreme floods and droughts. In O. Starosolszky, & O. Melder, (Eds.), Hydrology of disasters (pp. 43–51). London, England: James %26 James.

Kuczera,, G. (1999). Comprehensive at‐site flood frequency analysis using Monte Carlo bayesian inference. Water Resources Research, 35(5), 1551–1557. https://doi.org/10.1029/1999WR900012

Laio,, F., Di Baldassarre,, G., & Montanari,, A. (2009). Model selection techniques for the frequency analysis of hydrological extremes. Water Resources Research, 45(7). https://doi.org/10.1029/2007WR006666

N`Guyen,, C., Payrastre,, O., & Gaume,, E. (2014). Regional flood frequency analyses involving extraordinary flood events at ungauged sites: Further developments and validations. Journal of Hydrology, 508, 385–396. https://doi.org/10.1016/j.jhydrol.2013.09.058

Payrastre,, O., Gaume,, E., & Andrieu,, H. (2011). Usefulness of historical information for flood frequency analyses: A case study. Water Resources Research, 47, W08511. https://doi.org/10.1029/2010WR009812

Robert,, C. (2007). The Bayesian choice: From decision‐theoretic foundations to computational implementation (2nd ed.). Paris: Springer. ISBN 978‐0‐387‐71598‐8.

Robert,, C., & Casella,, G. (2004). Monte carlo statistical methods (2nd ed.). New York: Springer. ISBN 0‐387‐21239‐6.

Rogger,, M., Viglione,, A., Derx,, J., & Bloeschl,, G. (2013). Quantifying effects of catchments storage thresholds on step changes in the flood frequency curve. Water Resources Research, 49, 69466958. https://doi.org/10.1002/2013WR020553

Stedinger,, J. (1983). Confidence intervals for design events. Journal of Hydraulic Engineering, 109(1), 13–27.

Stedinger,, J., & Cohn,, T. (1986). Flood frequency analysis with historical and paleoood information. Water Resources Research, 22(5), 785–793.

Tanner,, M. (1996). Tools for statistical inference—Methods for the extrapolation of posterior distributions and likelihood functions (3rd ed.). New York, NY: Springer ISBN 0‐387‐94688‐8.

Viglione,, A., Merz,, R., Salinas,, J., & Blöschl,, G. (2013). Flood frequency hydrology: 3. A Bayesian analysis. Water Resources Research, 49. https://doi.org/10.1029/2011WR010782

Volpi,, E., Fiori,, A., Grimaldi,, S., Lombardo,, F., & Koutsoyiannis,, D. (2015). One hundred years of return period: Strengths and limitations. Water Resources Research, 51, 85708585.