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Abstract: It is desirable to account for misclassification error of

meteorological observations so that the true skill of the forecast can

be assessed. Errors in observations can occur in, among other places,

pilot reports of icing, and tornado spotting. Not accounting for mis-

classification error gives a misleading picture of the forecast’s true per-

formance. We present an extension to the climate skill score test de-

veloped in Briggs and Ruppert (2005) to account for possible misclas-

sification error of the meteorological observation. This extension sup-

poses a statistical misclassification error model where “gold” standard

data, or expert opinion, is available to characterize the misclassifica-

tion error characteristics of the observation. These model parameters

are then inserted into the BR skill score for which a statistical test of

significance can be performed.

Key words: Skill testing; Skill score; Forecast value; Misclassification

error; Brier score; Expected loss; Finley tornado forecast.
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1. Introduction

It is desirable to account for misclassification error of meteorological observations

so that the true skill of the forecast can be assessed. Not accounting for this error

gives a misleading picture of the forecast’s true performance. To this end, we develop

a misclassification error model to represent the effect of measurement error on skill

assessments. To create this misclassification error model requires either the use of

external data set (external to the set of forecasts and observations at hand), called

a “gold standard”, from which we can estimate the amount of error, or a subjective

estimate of the amount of error.

This paper extends the work of Briggs and Ruppert (2004) and Briggs and Ruppert

(2005; hereafter, BR) on the hypothesis testing of skill for dichotomous forecasts and

observations to the case where the observations are possibly measured with error

in the sense that the observations can be misclassified. We will use pilot reports

(PIREPs) of icing, and tornado observations as given in Finley (1884) as examples

of meteorological observations that can be measured with error (Brown et al., 1997;

Finley, 1884; Murphy, 1996).

The hypothesis tests for skill for dichotomous events are fully described in BR.

Statistical tests of skill and value are needed to ascertain whether observed skill/value

is due to chance or is significant. Other important work on the hypothesis testing of

skill can be found in Parker and Davis (1999), Hamill (1998), Wilks (1995), Murphy

(1996), Murphy and Ehrendorfer (1987), and Murphy and Winkler (1987).

The primary example used throughout this paper is PIREPs and the accompanying

forecasts of icing. The PIREPs are error prone, though the importance of accurate

icing forecasts for aircraft is obvious. This error is due to several factors - the variabil-

ity of the atmosphere, the way in which the icing was encountered (with the aircraft
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climbing, descending, etc.) and the subjectivity inherent in any description (Sand

and Biter, 1997). Traditional verification measures are not suitable because of the

large amount of measurement error in PIREPs.

The modelling framework developed also allows us to better estimate the under-

lying event rates (e.g. icing events) in the presence of measurement error and other

parameters of the joint observation-forecast distribution. These parameters can be

interesting in their own right, as we show later in an example.

This paper is organized as follows. Section 2 expounds the mathematical structure

of the climate skill test developed in BR, deriving both the skill test and climate skill

score. The tests developed can also be seen as tests of value as well as skill, and their

differentiation is noted. Section 3 shows the development of the misclassification error

model and its relation to the skill test and climate skill score. Section 4 discusses

a particular example of PIREPs and forecasts and the amount of detail that can

be added by using the misclassification model. We also show how the well-known

Finley tornado forecast data can be analyzed with this new method. Finally, Section

5 presents some concluding remarks.

2. Climate skill

a. Notation. The notation of BR is followed in this paper. We are concerned with

events Y which are dichotomous, that is Y ∈ {0, 1}. Forecasts X̃ are made for

observations Y which can be either dichotomous (X̃ ∈ {0, 1}) or probabilistic (X̃ ∈

[0, 1]). Here we consider dichotomous decisions X ∈ {0, 1} based on the forecast X̃.

This implies a transformation of a probabilistic forecast into an eventual dichotomous

decision X̃ → X ∈ {0, 1}, that is, a forecast user acts is if the event Y = 1 will occur,

or acts as if the event Y = 0 will occur.
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We also use the following notation developed in Schervish (1989). Let Yi ∈ {0, 1}

designate the ith observation of a dichotomous event, that is, Yi = 1 if the event

occurs and equals zero if it does not. Also let Xi ∈ {0, 1} designate the ith (possibly

transformed) forecast.

Loss is written as kY X . We assume k11 = k00 = 0, that is, the loss associated with

making a correct decision is 0 (incorporating cost or loss for when X = Y is easily

done: see Briggs, 2005). The finite loss k for making an error can always be quantified

such that the total loss is normalized to 1, so that with Y = 0 and decision X = 1 the

loss can be written as some k01 = θ < 1, which implies that with Y = 1 and decision

X = 0 the loss is k10 = 1− θ > 0. Note that these inequalities are strict.

The user of the forecast, who may also be called the decision maker, minimizes

his expected loss and makes decision XE based on the forecast X̃ via the relation

XE = I(X̃ ≥ θ), where the superscript indicates an any “expert” forecast, which is

one that is not the optimal naive forecast. Let p = P (Y = 1). The optimal naive

forecast is XN = I(p ≤ θ) which equals 0 when p ≤ θ and equals 1 otherwise. What

this means for example, is that, since θ ≈ 1/2 and P (Y = 1) is low, the optimal naive

forecast is to say “no event”.

b. Climate skill test. BR framed skill and forecast value in terms of expected loss.

In order for a collection of forecasts to have value, we desire that its expected loss

should be less than the expected loss incurred by using the optimal naive forecast,

that is, when E(kE) < E(kN). Typical definitions of skill (see Wilks, 1995) refer to

skill as relative accuracy of an expert to a naive forecast, a distinction we will keep

when developing skill/value scores below. The naive information we have about Y

is that we know p = P (Y = 1), the unconditional probability of occurrence, so that
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skill (or value), if it exists, is known as climate skill to reflect the idea that the expert

forecast can beat the simple or climatological forecast.

We will use the notation for joint and conditional probabilities pyx = P (Y =

y,XE = x), py|x = P (Y = y|XE = x). Thus, P (Y = 1|X = 1) = p1|1, P (Y =

0|X = 0) = p0|0, P (X = 1) = p+1, and P (Y = 1) = p1+ = p. Table 1 shows the

model in graphical form. We assume that the observations (Yi, Xi) are independent

and identically distributed. In particular, all of these probabilities are unvarying for

all i. Also Yi, Xj are independent for i 6= j, that is, the forecast observation process

is not dynamic and future observations do not depend on past forecasts nor on past

observations. See Briggs and Ruppert (2004) for a skill score and test for when Y is

Markov (such as a precipitation series might be).

It is convenient in what follows, but not necessary, to transform both the observa-

tions and the loss so that the optimal naive forecast XN is always 0 (see BR; below we

also give the results for untransformed forecasts and observations where appropriate).

The null hypothesis for the climate skill/value test can now be formed. It is

(1) H0 : E(kE) ≥ E(kN)

where kE corresponds to the loss of the expert forecast and kN is the loss of the

optimal naive forecast, and expectation is taken over both forecasts and observations.

It is easy to show that E(kE) = θp01 + (1− θ)p10 and that E(kN) = p1+(1− θ).

Substituting for the expected loss, and noting that XN ≡ 0, we have the null

hypothesis

H0 : p1|1 ≤ θ(2)

The alternative is that p1|1 > θ.
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BR showed that skill defined in terms of expected loss is the same as skill defined

in terms of accuracy when the loss is symmetric, that is, when θ = 0.5. Thus, when

θ = 0.5 the null is equivalent to H0 : P (Y = XE) ≤ P (Y = XN), that is, the expert

forecast’s accuracy is less than or equal to the optimal naive forecast’s accuracy. As

such, it is more proper to speak of a test of value when θ 6= 0.5 instead of strictly a test

of skill. We shall mostly use the term “skill”, however, as most general verification

schemes center, at least implicitly, on symmetric loss situations.

The probability model (likelihood) and the estimates derived from this model for

the parameters py|x can be found in BR, where a test statistic G = G(nyx, θ), based

on a likelihood ratio test, was also developed: these parameter estimates and test

statistics are easily found from their misclassification-error versions given in the next

Section. Here nyx are simply the counts of a 2× 2 table for Y and X, x, y = 0, 1 and

θ again is the loss parameter: the nyx are the cell counts of Table 1. Under the null

hypothesis, G has an asymptotic distribution which is related to the χ2 distribution

with one degree of freedom. Since the test is one-sided the actual distribution is

1/2χ2
0 + 1/2χ2

1 (Self and Liang, 1987; their case 5). Tests are carried out similarly to

a standard χ2
1 test, except that the user must double his chosen test level and use an

ordinary χ2
1 distribution, or equivalently divide the p-value given by the usual χ2 test

by 2.

c. Skill/Value Score. BR show that testing the significance of a skill score is the

same as the climate skill test if the following skill score is taken

Kθ(y, xE) =
E(kN)− E(kE)

E(kN)

=
p+1(p1|1 − θ)

p(1− θ)
(3)
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where the expected forecast loss is taken as the error score. A collection of perfect

expert forecasts will have a loss of 0, so a perfect skill score will be K ≡ 1. A collection

with “negative” skill, or negative value, as defined in (1), will have either an expected

loss the same as the naive forecasts or even greater so that the skill score will be 0 or

less. The null hypothesis is

(4) H0 : Kθ ≤ 0.

BR showed that this translates exactly to the hypothesis and test used before, defined

in (2).

An estimate for the skill/value score is

(5) K̂θ =
n11(1− θ)− n01θ

(n11 + n10)(1− θ)
.

For general verification purposes a plausible loss is symmetric loss, that is θ = 1/2.

Symmetric loss gives

(6) K̂1/2 =
n11 − n01

n11 + n10

.

This has a particularly simple form which shows easily whether forecasts have skill:

this is when n11 > n01, which makes K̂1/2 > 0. Our score for symmetric loss is also

similar in form to other skill scores which are summarized in, among other places,

Wilks (1995).

BR also showed the relationship between K and the popular Brier score B (of the

dichotomous forecasts). In particular, they found that

B̂ = p̂(1− K̂1/2)

so a collection of prediction has skill (with symmetric loss) when K̂1/2 > 0, or when

B̂ < p̂. This relationship is useful to draw a level at which the Brier score is skillful.
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3. Climate skill and misclassification error

a. Hypothesis test. We now extend the basic model of BR to include misclassifi-

cation error. In some cases it is not possible to observe Y directly or to know with

certainty that the event Y has or has not occurred. That is, if Y is observed with

some error there is the possibility of misclassification. Some Y = 1 may be mistak-

enly classified as Y = 0, and some Y = 0 may be mistakenly classified as Y = 1.

An example might be tornado spotting. It has been known that spotters sometimes

confuse other meteorological phenomena with tornados, both reporting the existence

of a tornado when one was not present and not reporting them when they were there.

Tornado reporting difficulties are explored in Speheger et al. (2002). The Finley

data (Murphy, 1996) may even be analyzed in this fashion; we do so later. Another

example is pilot reports of aircraft icing: again pilots may miss icing and may also

erroneously report it. It is desirable to assess how these kinds of uncertainties affect

the climate skill test so that the test and skill score reward the forecast when it truly

does well but the observations are poor.

The customary classification error framework that we use assumes that some ob-

servations Y are mistakenly classified as the opposite value with certain known proba-

bilities. These known probabilities can be estimated or gathered from outside sources

(outside of this model framework, that is). This practice is common in medicine

where a new diagnostic procedure is tested against an older so-called gold standard

that is thought to be error free (Geisler et al., 1988). X is the forecast as before, and

Y is the unobserved truth. W is defined to be a diagnosis or spotter’s report of the

truth Y . W is, for example, the pilot report or the spotter’s eyewitness report of a

tornado. The observational error can be modelled as

(7) P (W = 1|Y = 1) = t
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and

(8) P (W = 1|Y = 0) = u

Of course, P (W = 0|Y = 1) = 1− P (W = 1|Y = 1) = 1− t and P (W = 0|Y = 0) =

1− (W = 1|Y = 0) = 1− u. We would hope that t will be close to 1 and u close to

0: a perfect observational model has t = 1 and u = 0. For this model to be sensible

(in a probabilistic sense) we require that P (W = 1|Y = 1) > P (W = 1|Y = 0), or

t > u; further restrictions are necessary for the parameters, which will be detailed in

a moment.

The terms P (W |X) may be written incorporating Y . For example

P (W = 1|X = 1) = P (W = 1, Y = 1|X = 1) + P (W = 1, Y = 0|X = 1)

= P (W = 1|Y = 1)P (Y = 1|X = 1)

+P (W = 1|Y = 0)P (Y = 0|X = 1).

Other terms are modelled in a similar fashion. The key assumption is that, conditional

on the true value, the spotter’s report is independent of the forecast, that is,

(9) P (W |Y, X) = P (W |Y ).

This is a reasonable assumption if the person responsible for the ultimate diagnosis

is unaware of the forecast, or does not let it influence him. This won’t always be

the case if, for example, a spotter never tries to “spot” if the forecast is X = 0

(unfortunately, this may be likely for some meteorological phenomena). As stated

above, the probabilities P (W |Y ) are assumed to be known. The notation of previous

sections will continue to be used, that is, P (Y = 1|X = 1) = p1|1 and so on. The full
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model may thus be written

P (W = 1, X = 1) = (u + p1|1(t− u))p+1

P (W = 0, X = 1) = (1− u− p1|1(t− u))p+1

P (W = 1, X = 0) = (t− p0|0(t− u))(1− p+1)
P (W = 0, X = 0) = (1− t + p0|0(t− u))(1− p+1).

The constants nij defined before will continue to be used with the modification that

the observed W s and Xs are counted instead of unobserved Y s.

The full likelihood, L, of the misclassification model can now be built. This model

will be used in a test of climate skill in the presence of misclassification error. The

likelihood is:

L(p1|1, p0|0, p+1|W,X, t, u) =(10)

∏n
i=1 pXi

+1(1− p+1)
1−Xi(p1|1(t− u) + u)WiXi(t− p0|0(t− u))Wi(1−Xi)

(1− u− p1|1(t− u))(1−Wi)Xi(1− t− p0|0(t− u))(1−Wi)(1−Xi).

The maximum likelihood parameter estimates for p+1, p1|1, and p0|0 are simple to

find:

p̂+1 =
n11 + n01

n++

, p̂1|1 =
n11(1− u)− n01u

(n11 + n01)(t− u)
, p̂0|0 =

n00t− n10(1− t)

(n10 + n00)(t− u)
,

Further, p̂ = P̂ (Y = 1) is

p̂ =
n11 + n10 − nu

n(t− u)

The estimates of these parameters may be interesting in their own right, besides for

their use in the skill test. In particular, it is interesting to have a better estimate of

the event of interest p̂ = P̂ (Y = 1) in the presence of misclassification. For example,

the estimate p̂ may be larger or smaller than the error-free naive estimate depending

on the values of t and u. Examples will be given later. Additionally, the error-free

estimates, as given in BR, are easily derived from these by setting t = 1 and u = 0.

The estimates for p̂1|1 and p̂0|0 may be rewritten. First let q̂1|1 = n11/(n11 + n01)

and q̂0|0 = n00/(n10 + n00) (these are the misclassification error-free estimates of p1|1
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and p0|0). Then it is easy to show that

p̂1|1 =
q̂1|1 − u

t− u
, p̂0|0 =

q̂0|0 − (1− t)

t− u
.(11)

For this model to be probabilistically sensible we need to have the parameter estimates

bounded by 0 and 1; that is, we need 0 ≤ p̂i|j ≤ 1 for i, j = 0, 1 and 0 ≤ p̂, 1− p̂ ≤ 1.

This leads to restrictions on the possible values of t and u. Finding these restrictions

is simple. For example, we require p̂1|1 =
bq1|1−u

t−u
≥ 0, which means u ≤ q̂1|1. But we

also require 1 − p̂0|0 = 1 − bq0|0−(1−u)

t−u
≥ 0 which means u ≤ 1 − q̂0|0 = q̂1|0. Finally,

we require p̂ = n11+n10−nu
n(t−u)

≥ 0 which means u ≤ (n11 + n10)/n = P̂ (W = 1). Similar

calculations are made for the parameter t so that we can gather the requirements

together in the following form:

t ≥ max[n10/(n00 + n10), n11/(n11 + n01), (n11 + n10)/n]

u ≤ min[n10/(n00 + n10), n11/(n11 + n01), (n11 + n10)/n].

Not unexpectedly, these restrictions are symmetric.

The null hypothesis in this case is identical to the regular climate skill test, that is

equation (2). This is because we are interested in parameters modeling the X and Y

relationship; we are not specifically interested in the relationship between X and W .

Thus

(12) H0 : p1|1 ≤ θ.

The alternate is that p1|1 > θ, with a maximum likelihood estimate of p̃1|1 = min{p̂1|1, θ}.

The likelihood ratio statistic is defined as -2 times the log of the likelihood under the

null divided by the general likelihood (as given above). Calculation of the likelihood

ratio statistic G is simple as the terms involving p+1 and p0|0 drop out and

G = −2 log

[(
p̃1|1
p̂1|1

)n11
(

1− p̃1|1
1− p̂1|1

)n01
]

= 2n11 log

[
p̂1|1
p̃1|1

]
+ 2n01 log

[
1− p̂1|1
1− p̃1|1

]
.



13

Substituting the estimates leads to the likelihood ratio statistic of

G =

(
2n11 log

[
n11

n+1(θ(t− u) + u)

]
+ 2n01 log

[
n01

n+1(1− u− θ(t− u))

])
×

I
(
p̃1|1 > θ

)
.(13)

G has the same distribution as the climate skill test (because, again, the error para-

meters are fixed and not random in this model).

The role of the misclassification error parameters is now clear. When u > 0, p̂1|1

(from 11) decreases, making it harder for skill to be confirmed by the observations.

And when t < 1 it means that some Y = 1 have been not been classified as W = 1

when they should have been, and so G (on average) rewards those times when X = 1

and Y = 1 was mistakenly classified as W = 0. That is, the forecast was correct, but

because of misclassification error was not believed to be so.

The opposite discussion of the misclassification error parameters is true when the

optimal naive forecast is 1. There, it is easy to show that H0 : p0|0 ≥ 1 − θ, and

so t < 1 makes p̂0|0 (from 11) larger which makes it more difficult for there to be

skill. And u > 0 means that some Y = 0 have been not been classified as W = 0

when they should have been, and so G rewards those times when X = 0 and Y = 0

was mistakenly classified as W = 1. Again, the forecast was correct, but because of

measurement error was not believed to be so.

b. Measurement Error Skill/Value Score. The same framework as before is used

to develop a skill score. This is a slightly expanded version of equation (3).

(14) Kθ =
(p1|1 − θ)p+1

(1− θ)(p1|1p+1 + p1|0(1− p+1))
.



14

K̂θ is derived by substituting the estimates for each parameter

K̂θ =
(p̂1|1 − θ)p̂+1

(1− θ)(p̂1|1p+1 + p̂1|0(1− p̂+1))

=

(
n11(1−u)−n01u
(n11+n01)(t−u)

− θ
)

n11+n01

n++

(1− θ)
(

n11(1−u)−n01u
(n11+n01)(t−u)

n11+n01

n++
+ n10(1−u)−n00u

(n10+n00)(t−u)
(1− n11+n01

n++
)
)

=
n11(1− u− θ(t− u))− n01(u + θ(t− u))

(n11 + n10)(1− θ)− n++u(1− θ)
(15)

When t = 1 and u = 0, that is, error free observations, this skill score is identical

to equation (5).

Note: some do not prefer to recode the forecast and observations so that the optimal

naive forecast is always 0. We can always write the skill score fully: Kθ = Kθ,0I(p ≤

θ) + Kθ,1I(p > θ) where I(p ≤ θ) = 1 when p ≤ θ (when XN = 0) and 0 otherwise,

and I(p > θ) = 1 when p > θ (when XN = 1) and 0 otherwise. Here, we present the

estimate of the skill score for when the optimal naive forecast is 1.

(16) K̂θ,1 =
n00(t− (1− θ)(t− u))− n10(1− t + (1− θ)(t− u))

(n00 + n01)θ − n++(1− t)θ

4. Examples

a. Prediction and Observation of Aviation Icing in Aviation. Ice accumula-

tion threatens aircraft and the people on board. To predict this event, the National

Center for Atmospheric Research (NCAR) Research Applications Laboratory (RAL)

has developed a model known as the Current Icing Potential (CIP) model. The CIP

is a deterministic, expert-based model that yields an icing potential value. Icing po-

tentials are expressed on the [0,1] interval (and are similar to the pseudo-probability

forecasts X̃). Since this potential is not calibrated, it is not considered a probability.

Calibration has proved to be difficult due the non-random nature of observations and

the bias pilots have in reporting icing conditions more frequently during bad weather.
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Verification of the presence or absence of icing requires an aircraft be present at

that location. Most typically, the presence or absence of icing is documented in a pilot

report (PIREP: here, our W s). PIREPs note the location, description and intensity

of icing. This description is subjective and subject to further errors in its reporting

and recording. Further, when the CIP forecasts high icing potentials, general aviation

aircraft tend to avoid that area, reducing the number of PIREPS. To overcome these

problems, specially equipped research aircraft are deliberately flown into areas with

high icing potential. This study considers data collected by these aircraft as a “gold”

standard to quantify the effect of measurement error (these aircraft measure our Y s).

Further descriptions of this data may be found in Wolff and Bernstein (2004).

Computing verification statistics for the CIP forecasts is complicated by the dif-

ficulty in obtaining a random sample of icing conditions. The spatial distribution

of icing as indicated by the PIREP locations does not reflect the actual spatial dis-

tribution of icing conditions. For example, without knowing the reported values, if

one knew there was a concentrated area of PIREPs, one could correctly surmise that

there was either icing conditions or a high potential for icing in that area. However,

the potential location of PIREPs is also dictated by the locations of commercial air

traffic routes, clustering around major cities. These factors mean the values of the

probability model are poorly estimated, a consequence which is explored below.

Currently, real-time instrumentation is being installed on aircraft to continually

measure turbulence and icing conditions. This provides a more systematic and less

subjective way in which to collect data over a much larger area. As this technology

is introduced, pilots are still required to file PIREPs, permitting development of a

better “gold standard.” (Of course, one could also imagine over time that pilots of

planes fitted with such equipment would become more complacent about reporting
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threatening conditions since it’s being measured automatically.) The measurement

error concepts illustrated here would be applicable to this new source of data.

b. Eliciting Loss Values. We consider three loss values: θ = {0.1, 0.2, 0.5}. These

three values have been selected to explore a range of likely loss values. The actual cost

for a false positive or a false negative varies based on the type of aircraft. The general

aviation community is the most vulnerable to a false negative forecast, implying

θ ≤ 0.5. Often general aviation sector planes are not equipped to fly in icing conditions

and the pilots don’t have experience flying in such conditions. On the other hand,

twin engine commuters and larger commercial aircraft have equipment that allows

them to shed ice build-up. This makes icing less of a lethal threat and more of an

inconvenience and argues for a slightly larger θ ≈ 0.5. Briggs (2005) shows how

to incorporate non-zero loss (or cost); for example, in the cost-loss problem when

k11 = k01 > 0.

c. Transformations into a dichotomous forecasts and observations. As men-

tioned earlier, the CIP (X̃) is not a calibrated forecast. For this reason, the threshold

h used to transform this forecast into a dichotomous forecast is modeled indepen-

dently from the loss value θ. For specified h values, CIP potentials greater than h are

considered a “yes” forecast (X = I(X̃ > h)); potentials less than or equal to h are

considered “no” forecasts.

In PIREPs, icing intensity is reported as one of nine ordinal descriptions ranging

from none to extreme amounts. For this study, icing descriptions greater than “trace”

are considered to indicate the presence of icing. This is a procedure commonly used

within RAL. A histogram of CIP potentials (P (X̃|Y = j), j = 0, 1) for icing and non-

icing events is presented in Figure 1. This figure is also referred to as a discrimination

plot. Ideally, one would see to distinct clusters of values. In this plot, we see that the



17

forecast is nowhere near perfect. Table 2 shows the PIREPS observations (X) and

forecasts (W ).

The presence and absence of icing on the research aircraft was determined by the

union of several conditions. The temperature had to be suitably cold, the moisture

content had to be non-zero and the a conductivity probe had to indicate the build-up

of ice. In cases where multiple aircraft measurements corresponded to a single CIP

potential, icing was considered to be present if any reading indicated positive. Further

details on these data can be found in Pocernich et al. (2004).

Note that a concern and potential criticism of linking research plane data with

PIREPs is that often there remains a reasonable distance between the two aircraft.

Conditions favorable to icing may have a spatial resolution that is much less than

this distance, so conceptually, while in disagreement, both planes can be completely

accurate in the description of the icing conditions.

d. Skill score as a function of forecast threshold. Since the CIP is not cali-

brated, skill scores Kθ (15) were first calculated for θ = {0.1, 0.2, 0.5} across a range

of transformation thresholds h assuming no misclassification error in the PIREPS

(t = 1, u = 0). Note that the optimal naive forecast based on Table 2 is to always

say 1 (or to always say icing will be present), therefore the value of Kθ is given by

(16). Figure 2 illustrates the effect of θ on skill scores. For θ values of 0.1 and 0.2,

the skill score remains entirely negative. For θ = 0.5, a positive skill score exists for

transformation thresholds less than 0.55. This is disturbing since given the nature of

the problem, θ, the cost for a false positive, is likely to be small, while the cost for a

false negative, 1− θ, will be large.

e. Incorporation of misclassification error. The gold-standard data was col-

lected by a Twin Otter aircraft operated by the NASA-Glenn Research Station. This
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aircraft was flown to measure meteorological conditions related to aviation icing. This

data was matched to PIREPs occurring in the vicinity. A total of 74 pairs of research

aircraft (Y ) and PIREP (W ) reports were gathered. Table 3 summarizes the data.

From Table 3 we may estimate the misclassification error model parameters. A

first estimate for the parameters might be: P̂ (W = 1|Y = 1) = t = 0.8113 and for

P̂ (W = 1|Y = 0) = u = 0.8095. Recall that these parameters are going to be taken

as fixed in the misclassification error skill model to come.

The restrictions on the parameters of t and u require that t ≥ max[0.49, 0.83, 0.60]

and that u be less than or equal to the minimum of this set. The CIP data suggest

that t < 0.83 and u > 0.49 so that neither model constraint is met. We now have to

consider how valid these misclassification error parameters are.

It can be argued that the data from Table 3 is incomplete because the research

aircraft would usually not be sent up unless there was suspicion of icing; therefore

the count when Y = 0 and W = 0 is far too low. This would imply that the estimate

for u is far too large. Unfortunately, there is no other way to estimate u except

subjectively because of this, a common difficulty in misclassification error models. It

is our opinion that u is probably closer to 0, somewhere around 0.1-0.3. We have

more confidence that the value for t is better estimated, although its value would also

clearly change if the research aircraft were sent when icing potentials were low.

A skill score (with symmetric loss) applied to the data from the winter of 2003

(from Table 2) which was converted from a forecasted potential to a binary forecast

using the threshold of h = 0.5, and ignoring measurement error, is

K1/2 = 0.017

with a G = 1.08 and a p-value of 0.15, which indicates slight skill but that it is not

statistically significant by the usual criterion.
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We now account for measurement error by allowing t and u to range over their

possible values, calculating K̂1/2 for each pair, plotting the result in Figure 3. For

the t value of ≈ 0.82 estimated with NASA Twin Otter data we see that u must be

at least about 0.18 for there to be useful skill. Fix t at 0.82: as u increases, the skill

score increases. This is due to the times when the forecast was for no icing (X = 0),

but icing was incorrectly observed (W = 1 but Y = 0). u = P (W = 1|Y = 0),

so that u approaching 1/2 says that the pilots ability to correctly identify actual

non-icing is quite poor. Also note the wide range of the skill score as u changes.

Skill can be anywhere from very large, to nonexistent depending on the value of u.

This shows skill has a heavy dependence on u, so much so that a decision maker

may regard the possibility of actual skill for PIREP forecasts as undecidable unless

better gold standard data could be had. A similar fact emerges in the picture of p̂0|0

which must be greater than 0.5 for skill to exist. Interestingly, the estimate for icing,

p̂ = P̂ (Y = 1), with t ≈ 0.82 and u = 0.18, is about 0.65, which is higher than

the naive estimate of (4028 + 5161)/15254 = 0.60. This means that misclassification

error causes us to underestimate the true frequency of icing. Due to observation error

and the difficulties associated with it, icing may occurring more frequently then the

raw data indicate. The estimate of p̂1|1 is included for completeness, and may be of

interest for its own sake.

f. Finley. This measurement error technique can also be used to reexamine the Fin-

ley tornado forecasting data (Finley, 1884; summarized in Murphy 1996 and Wilks,

1995). Table 4 lists the data.

The optimal naive forecast, assuming symmetric loss, is to say no tornado. The

climate skill score is K = −0.86, which indicates, as is well known, a lack of skill.
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Certainly, observations of tornados at this time (and the present) were not perfect;

one can imagine t and u being different than ideal. So we can ask for what values of

t and u would Finley’s data have skill.

Fixing u = 0, and t ≤ 0.55 just gives K > 0. We don’t know if this is a plausible

value for t to rescue Finley. Having a u > 0 at this t decreases K and makes it

less likely for skill to exist. A contour plot of K̂ for various values of t and u (the

restrictions were u ≤ 0.009 and t ≥ 0.280) is presented in Fig. 4: for almost no values

of t and u is K̂ > 0, making it unlikely that these forecasts possess any skill.

5. Conclusions

Formal tests of simple skill for forecasts for dichotomous events that are possibly

measured with error have been developed. Skill/Value is when the expected loss

incurred while using an expert forecast was less than the expected loss that would

have been incurred had the optimal naive forecasts been used instead.

It was shown that measurement error can both positively and negatively affect the

assessment of skill, and that if measurement error isn’t accounted for a misleading

picture of true forecast performance can be created.

This new statistic is a simple extension, but requires the user supply measurement

error parameters. These parameters may not always be easy to get, and the user may

have to settle for a subjective estimate of them.

Many types of weather phenomena can now be remotely estimated. For example,

rainfall can be estimated away from weather stations through the use of radar. This

is not true icing and turbulence. These weather conditions still require an aircraft

be present to be observed. Presently, this information is most commonly gained

from PIREPs although slowly this is changing. Some commercial aircraft are being
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equipped with instruments to measure and immediately relay icing and turbulence

data. In the future, this will provide a better gold standard than the more limited

research aircraft data used in this paper. Results shown here indicate that due to

observation error, the frequency of icing in the vicinity of PIREPs may be higher

than naively assumed.
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Table 1. Parameters used in the probability model. Each cell con-
tains the estimate for P (Y = i|X = j)P (X = j) for i, j = 0, 1. The
marginals contain the estimate for the P (Y = i) and P (X = i), i = 0, 1.
The loss kij for an observation/forecast pair i, j = 0, 1 is also shown:
note that when Y = X the loss is 0. See Briggs (2005) for cases where
this need not hold.

Y
1 0

X
1 p1|1p+1; k11 = 0 (1− p1|1)p+1; k01 = θ p+1

0 (1− p0|0)(1− p+1); k10 = 1− θ p0|0(1− p+1); k00 = 0 1− p+1

p 1− p

.
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Table 2. PIREP forecast data from the winter of 2003. W = 1 indi-
cates a pilot reported icing, and W = 0 they did not. X = 1 indicates
icing was forecasted, and X = 0 indicates it was not.

W = 1 W = 0
X = 1 4028 798
X = 0 5161 5267

.
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Table 3. PIREP gold standard data, from the CIP Twin Otter study.
Y = 1 and Y = 0 indicate the presence/ absence of icing as measured
by the research aircraft. W = 1 or W = 0 indicates the presence or
absence of icing as reported on a PIREP.

Y = 1 Y = 0
W = 1 43 17
W = 0 10 4

.
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Table 4. Finley’s tornado data.

Y=1 Y=0
X=1 28 72
X=0 23 2680

.
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