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2 THE SKILL PLOT

Summary: We introduce the Skill Plot, a method that it is directly relevant to a

decision maker who must use a diagnostic test. In contrast to ROC curves, the skill

curve allows easy graphical inspection of the optimal cutoff or decision rule for a

diagnostic test. The skill curve and test also determine whether diagnoses based on

this cutoff improve upon a naive forecast (of always present or of always absent). The

skill measure makes it easy to directly compare the predictive utility of two different

classifiers in analogy to the area under the curve statistic related to ROC analysis.

Finally, this paper shows that the skill based cutoff inferred from the plot is equivalent

to the cutoff indicated by optimizing the posterior odds in accordance with Bayesian

decision theory. A method for constructing a confidence interval for this optimal

point is presented and briefly discussed.
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1. Introduction

A patient presents himself to an emergency room with right lower quadrant pain

and appendicitis is suspected. In these cases, typically the white blood count (WBC)

is measured because high levels are thought to be highly predictive of appendicitis

(Birkhahn et al., 2005). If the WBC is greater than or equal to some particular cutoff

value, xc, the patient is diagnosed with appendicitis and some kind of proactive

treatment is begun, such as a CAT scan or an exploratory laparotomy. Levels less

than xc are treated as non cases and either alternative explanations for the symptoms

are investigated, or the patient is sent home. We introduce here a plot based upon

the skill score of Briggs & Ruppert (2005) as a measure of performance of forecasts

of this type.

There has been an increased emphasis on methods to evaluate the effectiveness of

classification and prediction rules. Prominent among these methodologies are ROC

curves (Pepe, 2004; Zhou et al., 2002; Begg, 1991). In an important review of this area,

Pepe (2000b) comments, “For binary outcomes, two ways of describing test accuracy

are to report (a) true- and false-positive rates, and (b) positive and negative predictive

values. ROC curves can be thought of as generalizing the former to continuous tests;

that is, ROC curves generalize the binary test notions of true-positive and false-

positive rates to continuous tests. Are there analogs of ROC curves that similarly

generalize the notions of predictive values to continuous tests?” We intend to show

the Skill Plot is just such an analog.

Given the classification of cases (for a fixed xc), observations of the actual disease

state, and a loss matrix to specify the costs of misclassification, Briggs and Ruppert
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(2005) developed a skill test to evaluate the effectiveness of this classification rule.

The skill test is based upon comparing the expected loss of the forecast to the expected

loss of the optimal naive forecast, a forecast based only on the marginal distribution of

the outcomes. A forecast procedure has skill if its predictions have smaller expected

loss than predictions made by the optimal naive forecast, see Section 2.

The Skill Plot generalizes the skill score for a range of xc values. It has a number

of advantages that complements the well known properties of the ROC curve, and

generally provides an easy-to-interpret alternative to the ROC curve at little compu-

tational cost. The Skill Plot allows an analyst to immediately judge the quality of a

diagnostic test/forecast based on a particular cutoff value and to assess the range of

useful cutoffs.

Throughout this work we focus on how one actually makes decisions based on a

diagnostic test. We show that the Skill Plot is directly relevant to a decision maker

who uses the results of a diagnostic test. The levels of the test are present on the plot

and the consequences of making a choice based on a particular level are immediately

apparent.

The motivating example for this paper is data by Birkhahn et al. (2005), who

report on patients arriving at a large, urban emergency room presenting with right

lower quadrant pain. Among other things, white blood count, with units in thousands

of cells per microliter of blood, was measured for each patient, and it was of interest to

find an optimal cutoff of WBC to classify patients as suspected of having appendicitis

or not.
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Figure 1 shows the two density estimates of WBC for diseased (fx|1) and non-

diseased (fx|0), using the R density function and slightly under-smoothed to accen-

tuate detail. As expected, fx|1 has higher probability for higher values of WBC than

does fx|0. There is also considerable overlap of the two densities; neither suggests a

normal density. The consequences of this non-normalisty will be explored in Section

6.

This article is organized as follows. Section 2 gives a brief overview of the ROC

curve along with the skill score, and Section 3 develops the Skill Plot extension to this

score. Section 4 demonstrates that the maximum skill score on the plot is identical to

the Bayes-optimal classification rule for a given loss. Following this review, Section

5 discusses confidence intervals for the plot. Section 6 discusses options for Skill

Plot estimation, including non-parametric, semi-parametric and parametric methods.

Section 7 discusses conclusions and possible extensions of the method.

2. Review of the Skill Score and ROC curve.

In this Section, we briefly review the skill score and ROC curve and introduce some

notation. There are a huge number of papers and books on the ROC curve, so we

say very little about it here.

2.1. Skill Score. The skill score and test were introduced (Briggs & Ruppert, 2005)

as a method to evaluate simple yes/no or probabilistic forecasts, X ∈ {0, 1} or X̃ ∈

[0, 1], of binary events Y ∈ {0, 1} for accuracy or value in the two-decision problem.

If the forecast X is dichotomous, the decision is X; if X̃ is a probabilty, the two-

decision problem transforms the forecast into X = I(X̃ > θ), where the constant θ

(which is a constant for any decision maker) represents a loss (and I(·) is the indicator
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function). The value of θ derives from letting the loss kyz ≥ 0 when Y = y, X = z:

typically, though not necessarily, k11 = k00 = 0; that is, the loss for correct forecasts

is 0 (see Briggs (2005) for a discussion of general loss). This allows us to write the

loss θ = k01/(k10 + k01), when Y = 0, Z = 1 (false positive), and 1− θ the loss when

Y = 1, Z = 0 (false negative).

Also required is the concept of an optimal naive forecast (ONF), which is the

decision one would make knowing only P (Y = 1) and θ. To model the forecasts and

observations, we write pyx = P (Y = y, X = x) and so on. We also write, for example,

p+x = P (Y = 0, X = x) + P (Y = 1, X = x).

A (set of) forecasts is said to have skill when it is more accurate than the ONF (for

forecasts of the same event). A forecast is said to have value when its expected loss is

smaller than the expected loss of using the ONF: the ONF is defined as I(p1+ > θ).

Skill and value are equivalent when the loss is symmetric, i.e., when θ = 1/2. No

decision maker should use a forecast if it does not have skill (or value), because the

ONF forecast is superior; that is, using a forecast which does not have skill is, in this

sense, worse than doing nothing.

Briggs & Ruppert (2005) derive the skill score K, the skill test statistic and give

its distribution. Interested readers should refer to that paper for complete details. A

limitation of the original skill score is that it was developed for a fixed (probabilistic)

forecast. The skill curve (introduced below) generalizes the concept to handle a

diagnostic test. Here the X̃ may be a continuous number and the forecast (decision)

becomes X = I(X̃ ≥ xc). As before xc is some cutoff.
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2.2. ROC curve. ROC curves plot the true positive rate (or “hit rate”) vs. the

false positive rate for a classification rule X = I(X̃ ≥ xc) based on a continuously

increasing sequence of cutoff values xc (Pepe, 2000b; Venkatraman & Begg, 1996).

The ROC curve for the Birkhahn appendicitis data is shown in Fig. 2 (the solid plus

dashed lines form the ROC curve; the other markings are explained below).

The area under the ROC curve (AUC) is commonly used as a measure of forecast

quality. The AUC is equivalent to the probability that a random observation X

coming from the the diseased population is larger than that from the non-diseased

population, i.e. P (XY =1 > XY =0). It can be estimated using the Mann-Whitney

U-statistic (Hanley & McNeil, 1982). If this probability is extreme it indicates that

the sample contains information that is useful for discrimination. The ROC curve is

invariant to monotonic transformations of the diagnostic variable X, and ROC curves

from several different diagnostic tests can be displayed on the same plot. Examples of

formal tests of the equivalence of ROC curves for different diagnostics can be found

in Venkatraman and Begg (1996). Regression modeling strategies can also be useful

(see Pepe (2000a) for references). The AUC for the appendicitis data is AUC = 0.85.

Some shortcomings of the ROC curve are clear. While one can get a general sense of

the performance of the forecast, statistics such as AUC are not especially relevant to

someone who must make a decision about a particular xc. Furthermore, the optimal

cutoff (the xc that gives the best forecast performance) is not easily apparent on the

plot. Work is required to translate the optimal decision point from ROC space to the

original coordinate space. We conclude that despite their elegance and the intuitive

information that they provide the experienced user, ROC curves lack or obscure
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several quantities that are necessary for evaluating the operational effectiveness of

diagnostic tests.

A historical note may help. Receiver operating characteristic curves were first used

to check how radio receivers (like radar) operated over a range of frequencies. It

was desirable that the radio discriminate against noise at each frequency. In other

words, the radio operator had to make a decision at each different frequency: is

what I’m hearing signal or noise? The ROC curve provides a graphical display of

such performance. This is not how most ROC curves are used now, particularly in

medicine. The receiver of a diagnostic measurement, say the doctor for the patient

with suspected appendicitis, must have in mind (with all else equal) a level of white

blood count above which he will act as if the patient has appendicitis. That is, he

wants to make a decision based on some xc, and is not especially interested in how

well he would have done had he used some different cutoff. The next Section will

clarify this.

3. The Skill Plot

We label the diagnostic measurement (or forecast) X̃ ∈ <. We are interested in the

two-decision problem, and so label the forecast Xxc = I(X̃ ≥ xc) for a fixed cutoff

xc. Let I(p1+ ≤ θ) = Ip. For a forecast to have skill when Ip = 1, it is important

that the forecast does well when the observed is 1 as the optimal naive forecast in

those cases is to always say 0. The opposite is true when Ip = 0: the forecast should

do well when the observed is 0. Briggs and Ruppert derive the skill (or value) score,

here for a fixed xc, as the expected loss of the ONF minus the expected loss of the

given forecast, divided by the expected loss of the ONF (to provide a scaling so that
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the maximum skill score is 1); or as

Kθ(xc) =
p+1(p1|1 − θ)

p1+(1− θ)
Ip (1)

+
(1− p+1)(p0|0 − (1− θ))

(1− p1+)θ
(1− Ip),

with an estimated score of

K̂θ(xc) =
n11(1− θ)− n01θ

(n11 + n10)(1− θ)
Ip +

n00θ − n10(1− θ)

(n00 + n01)θ
(1− Ip), (2)

where nyx are the counts when Y = y and X = x.

The Skill Plot simply graphs K̂θ(xc) versus the threshold xc. Fig.3 plots this curve

for three different values of loss θ. (Technically speaking, when θ 6= .5 these figures

should be called Value Plots as the measure Kθ(xc) is with respect to expected losses.)

K0.1 (dashed line; a level which is more accepting of false positives and more punitive

of false negatives), K0.5 (solid line; false positives and negatives have equal loss), and

K0.9 (dashed-dotted line; a level which is more accepting of false negatives and more

punitive of false positives) correspond to θ = 0.1, 0.5, and 0.9 respectively. A dotted

line at 0 is indicated; points above this line have skill, while those below do worse

than the optimal naive forecast.

The highest skill for this plot (for θ = .5) is 0.28 at X = 14.9. As expected,

the point of maximum skill decreases as it becomes less costly to classify patients

as having appendicitis. The line for θ = .9 may not be realistic for this particular

example on its face, but consider instead that the patients for which this plot pertains

have already had several other diagnostic tests (such as ultrasound, CAT scans, blood

work, etc.) and their condition is still ambiguous. Then a θ = .9 might make sense

(at least with regards to appendicitis; the patient may still suffer from other ills). In

any case, the maximum has shifted to higher values as expected.
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The level of xc with the largest skill (for any θ) remains obscured on the ROC curve

(which is also incapable of showing the loss information θ). The decision points for

the three values of θ are overlayed on the ROC curve to highlight that finding these

values on a ROC curve is not intuitive .

Two disadvantages of the Skill Plot, when compared to the ROC curve, are: (1) the

inability to compare multiple testing rules based on different diagnostic test variables

on the same graph (as each diagnostic test would have different x-axis units), and (2)

the lack of an AUC-like overall level of test goodness.

One solution to the first weakness is to plot Kθ(xc) against the percentiles of the

X variable. Such a plot is then invariant to transformations of X and is capable of

comparing any number of different classifiers on the same graph at the loss of a small

amount of interpretability.

The skill score Kθ(xc) depends on X only through its marginal CDF. Hence the

Skill Plot maintains much of its structure under monotonic transformations of X.

While transformations of X modify the x-axis, the values on the y-axis remain the

same indicating that the value xmax maximizing Kθ(xc) is invariant in the same sense

as the MLE.

Alternatively, at an individual xmax, the skill score for two (or more) diagnostic

tests can be compared. If Kθ(x1,max) > Kθ(x2,max) for diagnostic tests X1 and X2,

then we know that test X1 is superior. This is discussed further in Section 5.

We now argue that the second weakness mentioned above should actually be viewed

as a benefit, and that, for the two-decision problem, the AUC for the ROC curve can

give a misleading picture of forecast performance. The AUC for the ROC curve uses

all the values of the diagnostic instrument (the range of X̃), including those values
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(such as those < 10.9 as seen in Fig. 4) that are deemed unskillful. These points are

illustrated on Fig. 2 as the dashed part of the ROC curve. We argue that including

these points in AUC calculations can give a misleading picture of a test’s actual

performance. For example, it may be possible for AUC1 < AUC2 (for two different

diagnostic tests) while Kθ(x1,max) > Kθ(x2,max). In practice, the decision maker using

a diagnostic test is not interested in the AUC. He is interested in how well the test

performs at the actual xmax used. In this way, the Skill Plot presents a more relevant

analysis to the scientist using the test.

4. Optimal Skill Thresholds.

Here we demonstrate an important optimality property of the skill function, namely

that the skill maximizing cutoff xc is exactly the optimal Bayes classification bound-

ary. Hence, skill curves provide a method to visualize optimal Bayesian classification.

We assume without loss of generality that the disease is diagnosed if the diagnostic

test exceeds the threshold, Xxc = I(X̃ ≥ xc). We first write equation 1, for a fixed

xc, as

Kθ(xc) =
P (X̃ > xc)(P (Y = 1|X̃ > xc)− θ)

p1+(1− θ)
Ip (3)

+
P (X̃ ≤ xc)(P (Y = 0|X̃ ≤ xc)− (1− θ))

(1− p1+)θ
(1− Ip)

Expanding this, and condensing some notation, gives

Kθ(xc) =
1

p1+(1− θ)

[
P (X̃ > xc, Y = 1)− θP (X̃ > xc)

]
Ip

+
1

(1− p1+)θ

[
P (X̃ ≤ xc, Y = 0)− (1− θ)P (X̃ ≤ xc))

]
(1− Ip)

=
(1− θ)(1− F1) + θF0

p1+(1− θ)
Ip +

−(1− θ)F1 + θF0

(1− p1+)θ
(1− Ip) (4)
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using, for example, the fact that P (Y = 1|X̃ ≤ xc)P (X̃ ≤ xc) = P (X̃ ≤ xc, Y = 1),

and P (X̃ > xc) = 1− P (X̃ ≤ xc); where F1 = P (X̃ ≤ xc, Y = 1), and F0 = P (X̃ ≤

xc, Y = 0). It follows that F1 + F0 = P (X̃ ≤ xc).

For completeness, we also give the skill score for the rule Xxc = I(X̃ < xc). For

this rule we have

Kθ(xc) =
(1− θ)F1 − θF0

p1+(1− θ)
Ip +

(1− θ)F1 + θ(1− F0)

(1− p1+)θ
(1− Ip) (5)

The following theorem contains our main result, namely that xmax which maximizes

Kθ(xc) is in fact the optimal separation point as defined by Bayes rule in classification.

Theorem 4.1. Let f(·|Y = y) denote the conditional density for x when Y = y.

The point xmax = argmaxxc{Kθ(xc)} is equivalent to the point x? = {x : f(x|Y =1)
f(x|Y =0)

=

θ
1−θ

1−p1+

p1+
} where x? defines the optimal decision boundary for a Bayesian classifier.

Proof. To find the maximum of Kθ(xc), take the derivative of (4) with respect to xc,

set equal to 0, and solve for xmax. We do this first for Ip = 1. The skill becomes

Kθ(xc) =
(1− θ)(1− F1) + θF0

p1+(1− θ)
(6)

and

dKθ(xc)

dxc

= − 1

p1+

fx,1(xc) +
θ

p1+(1− θ)
fx,0(xc) (7)

where, by the Fundamental Theorem of Calculus, dFi/dxc = fx,i(xc) is the joint

density of (X, Y = 1) evaluated at xc. Setting (7) equal to 0 to solve for xc gives

fx,1(xc)

fx,0(xc)
=

θ

1− θ
(8)

which can also be written as

fx|1(xc)

fx|0(xc)
=

θ

1− θ

1− p1+

p1+

. (9)
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where fx|i is the conditional density of X given Y = i.

Second, let Ip = 0 so that

Kθ(xc) =
−(1− θ)F1 + θF0

(1− p)θ
(10)

and

dKθ(xc)

dxc

=
(1− θ)

(1− p1+)θ
fx,1(xc)−

1

(1− p1+)
fx,0(xc) (11)

Setting (11) equal to 0 and solving for xc again gives

fx,1(xc)

fx,0(xc)
=

θ

1− θ
. (12)

Both results show that xmax is identical to Bayes Rule. �

Note that Kθ(xmax) is not guaranteed to be greater than 0 for any θ. It is merely

the largest measure of the skill score using X as the prediction. The same argument

can be used to show the result holds if we define Y = 1 when X̃ ≤ xc.

ROC curves can also be used to find the Bayes Rule as shown by Metz et. al. (1978)

among others. For example, Zweig and Campbell (1993) and Zhou et al. (2002) define

m =
1− p1+

p1+

θ

1− θ
(13)

to be the slope of the ROC curve at the optimal operating point, which is found by

maximizing

R(x) = P (X̃ ≤ x|Y = 1)−m(1− P (X̃ > x|Y = 0) (14)

or R(x) = sensitivity(x)−m(1− specificity(x)). R(x) also equals

R(x) =
1

p1+

P (X̃ ≤ x, Y = 1)− 1

p1+

θ

1− θ
P (X̃ ≤ x, Y = 0). (15)

Taking the derivative gives

dR

dx
=

1

p1+

fx,1(x)− 1

p1+

θ

1− θ
fx,0(x) (16)
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Setting this equal to 0 and solving for xmax gives an identical answer to (12) above.

The previous theorem then shows that the optimal boundary point for decision mak-

ing is also the optimal skill point. Explicit calculation of the skill score or test is

required to learn if skill is actually positive at this point.

5. Skill Intervals

The appendicitis example motivates a different perspective on the use of the Skill

Plot. A scientist developing a diagnostic test may desire to use the Skill Plot or skill

score to try to understand the overall quality of the diagnostic test. One approach

is to construct an interval for cutoff values with positive skill. Consider Fig. 4.

The dark curve corresponds to the basic Skill Plot, K1/2(xc) vs. xc. The dashed

lines correspond to upper and lower 95% confidence bands for the skill based on

inverting the likelihood ratio test of Briggs and Ruppert (2005). As discussed above,

the scientist can immediately see that the peak diagnostic performance occurs at the

level about 14.8 - 14.9. More importantly, it is clear that for all threshold values

greater than 10.9 the test offers diagnostic power beyond naive guessing.

For inferential purposes, we can use the dashed point-wise confidence bands to

construct a region of positive skill. That is, the region defined by the lower point-

wise confidence intervals crossing the boundary of zero skill. As a first step, we invert

the likelihood ratio test for skill introduced by Briggs and Ruppert (2005). Without

loss of generality, we assume that we are in the case p1+ ≤ θ. The corresponding

likelihood ratio test statistic (for the null hypothesis of no skill for a fixed xc) is

G2(xc) = 2n11 log

[
p̂1|1

p̃1|1

]
+ 2n01 log

[
1− p̂1|1

1− p̃1|1

]
. (17)
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The asymptotic distribution of G2, FG2 = 0.5χ2
0 + 0.5χ2

1. For a particular threshold,

two sided (1−α) level confidence intervals for skill can be derived from G2 by solving

the equation

G2(p̃) = F−1
G2 (1− α). (18)

The roots of this equation can then be used to compute upper and lower endpoints

for the skill score Kθ(xc). This technique is used to create the confidence intervals

in Fig. 4. There vertical dashed lines near 12.4 and 24.3 indicate that all thresholds

between provide statistically significant levels of skill.

The collection of all thresholds for which the lower value confidence endpoint is

greater than zero provides a skill interval. An interesting point to note regards the

length of intervals constructed in this manner. It is not true that shorter intervals

are superior. In general, short intervals indicate a more precise knowledge of a true

population parameter. Here, wider intervals indicate a larger range of skill across

different threshold values and hence less sensitivity in discrimination due to the exact

choice of threshold.

The 95% confidence interval for the optimal cut-point, xmax ranges between ap-

proximately 12.4 and 24.3 and is denoted on the graph by the two dashed vertical

lines.

6. Fitting Skill Plots

In constructing skill curves, users have three basic options. The simplest approach

is non-parametric where, for each xc, K̂θ(xc) is computed using eq. 2. The Skill

Plot then consists simply of plotting this series of points and adding an interpolating

line if desired. In many situations, particularly when sample sizes are small, the plot
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will lack smoothness due to its discrete nature. Because the values of Kθ(xc) do

not change between succeeding ordered values of xc, the plot is essentially piecewise

constant with jumps similar to a Kaplan-Meier curve.

One remedy to the lack of smoothness in the plot is to use continuous distributions

to model the distribution functions Fi = P (X ≤ xc|Y = i) for i ∈ {0, 1} in eq. 4.

Of course, it may be difficult to find parametric models that accurately fit these two

distributions.

An intermediate option is to use a semiparametric method. One possible approach

is the technique of Qin and Zhang (1997), see also Qin and Zhang (2003). These au-

thors prove that for conditional distribution functions F1(x) and F0(x), with densities

f1(x) and f0(x) respectively,

f1(x)

f0(x)
= exp{α + βT r(x)}, (19)

where α = α? + log[{1 − P (Y = 1)}/P (Y = 1)]} for some scaler parameter α?, and

r(x) a p × 1 smooth function of x. Note that this is an exact result. However, the

function r(·) will generally not be known. If we assume that r(x) takes the form

of a simple polynomial function, we can use this result to link the density functions

through the relationship f1(x) = exp{α + βT r(x)}f0(x). Qin and Zhang show that

this leads to the semiparametric CDF estimators

F̃1(x) =
1

n0

n∑
i=1

exp{α̃ + β̃T r(Xi)}I(Xi ≤ x)

1 + ρ exp{α̃ + β̃T r(Xi)}
, (20)

F̃0(x) =
1

n0

n∑
i=1

I(Xi ≤ x)

1 + ρ exp{α̃ + β̃T r(Xi)}
, (21)



THE SKILL PLOT 17

where n is the total number of observations in the sample, n0 represents the number

of observations in the non-disease group, n1 = n− n0 and ρ = n1/n0. Finally α̃ and

β̃ are the solution of the score equations

∂l(α, β)

∂α
= n1 −

n∑
i=1

ρ exp{α + βT r(xi)}
1 + ρ exp{α + βT r(xi)}

= 0, (22)

∂l(α, β)

∂β
=

n1∑
j=1

r(xi)I(Yi = 1)−
n∑

i=1

ρ exp{α + βT r(xi)}
1 + ρ exp{α + βT r(xi)}

r(xi) = 0. (23)

Figure 5 shows nonparametric, semiparametric and parametric fits of the skill curve:

the solid line is the result of fitting with a gamma, the dashed with a normal. The

normal does poorly, as might be expected after examining Fig. 1. The gamma para-

metric fit is quite good and offers a very smooth fit of the data. Fig. 5 also gives the

semiparametric curve (dotted line) based upon a 3rd order polynomial approximation

r(x) = (x, x2, x3), which offers slight smoothing in comparison to the nonparametric

fit.

7. Conclusion

This paper has introduced the Skill Plot which extends the idea of positive and

negative predictive values to continuous diagnostic tests in analogy to the relationship

between sensitivity and specificity and the ROC curve. It is an attractive method that

offers a number of unique qualities and complements the more traditional analysis

based upon ROC curves for assessing performance of forecasts or classifiers based

on continuous variables. In contrast to ROC curves, it is quite easy to find the

optimal threshold or decision rule and to determine through the use of a skill test

whether diagnoses based on this cut point actually improve upon the optimal naive
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forecast. The method is invariant to transformations of the diagnostic statistic similar

to ROC curves. The optimal threshold indicated on the plot is exactly equivalent to

that indicated by optimizing the posterior odds in accordance with Bayesian decision

theory. Confidence intervals can be displayed which demonstrate the range of useful

values for discrimination.
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List of Figures

Figure 1 The the two densities fx|1 and fx|0: the solid line is the former. The

x-axis is white blood count with units in thousands of cells per microliter of blood.

These plots were produced using the R density function and slightly under-smoothed

so that more detail can be seen.

Figure 2 ROC curve for the Birkhahn et al. data. The ROC curve is the

combination of the solid and dotted lines. The dotted portion of the curve corresponds

to the area of white blood count values in which there is no skill. The three points of

decision corresponding to θ = .1, .5, .9 are also shown.

Figure 3 The estimated skill/value for θ = .1 (dashed), .5 (solid; symmetric loss),

.9 (dot-dash) for each level of X. A dotted line at a skill of 0 is indicated; points above

this line have skill/value, while those below do worse than the optimal naive forecast.

The x-axis is white blood count with units in thousands of cells per microliter of

blood.

Figure 4 The estimated skill K̂1/2 for each level of X, plus the point-wise 95%

confidence interval at each point. A dotted line at a skill of 0 is indicated; points

above this line have skill, while those below do worse than the optimal naive forecast.

The two vertical lines indicate the points at which the confidence interval of the skill

cross 0.
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Figure 5 The estimated skill K̂1/2 for each level of X (rough, solid line), along

with two parametric fitted skill curves: the solid line is fit with a gamma, the dashed

with a normal. The semiparametric fit is the dotted line, and fits best.
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