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2 EQUI-PROBABLE ASSIGNMENT

Summary: How to assign numerical values for probabilities that do

not seem artificial or arbitrary is a central question in Bayesian statis-

tics. The case of assigning a probability on the truth of an proposition

or event for which there is no evidence other than that the event is con-

tingent, is contrasted with the assignment of a probability in the case

where there is definte evidence that the event can happen in a finite set

of ways. The truth of a proposition of this kind is frequently assigned

a probability via arguments of ignorance, symmetry, randomness, the

Principle of Indiffernce, the Principal Principal, non-informativeness,

or by other methods. These concepts are all shown to be flawed or

to be misleading. The statistical syllogism introduced by Williams in

1947 is shown to fix the problems that the other arguments have. An

example in the context of model selection is given.

Key words: Finite exchangeability; Induction; Logical Probability;

Model selection; Principle of Indifference; Principal Principle; Prior

assignment.
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1. Introduction

There are (at least) two central foundational problems in statistics:

how to objectively justify probability models, and how to objectively

assign probabilities to events and to the parameters of probability mod-

els. The goal of both of these operations is to insure that they are not

arbitrary, or are not guided by the subjective whim of the user, and

that they logically follow from the explicit evidence that is given or

assumed to be known.

Concepts such as exchangeability, symmetry, and even direct appeals

to physics or biology are sometimes given to posit a probability model

(Diaconis, 1977; Diaconis and Freedman, 1980; Diaconis, 1988). How-

ever, frequently no justification other than habit—or ignorance of any

alternative—is used to guide a user to select a particular model. Model

correctness is not examined here. I take models as given, and instead

look at the second question of probability assignment.

That problem is huge, so here only a small piece of it is taken in the

context of logical probability: how to assign a probability value on the

truth of an observation statement (or event) in two situations: when

nothing is known about the event other than it could happen (definite

knowledge of contingency), and when we know that the contingent

event can happen in a certain finite number of ways. Questions like

this are common in model selection, and are central to questions of
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probability interpretation. For a very good reason to be explained,

formal examples will be withheld until after the central concepts are

introduced.

First, it is useful to recall, what is often forgotten, that—both deduc-

tive and non-deductive—arguments of logic are nothing more than the

study between statements, and only between the statements explicitly

defined. How true is one thing given another? is the usual, and should

be the only, question. The existence and characteristics of the state-

ments themselves is left to other disciplines. Forgetting this distinction

can lead, and has lead, to unnecessary arguments about the nature of

logical probability. My attempt here is to clear up some of these con-

troversies in the context of probability assignment for the truth of an

elementary propostion.

Start with classical logic, mathematically describe in, e.g., (Schechter,

2005). So, suppose p is a premise and q a conclusion to the argument

from p to q. We may write this argument in many ways: one of the

most verbose—but clearest—is this:

p

q
(1)

which is to be read, “(the proposition) p (is true) therefore (the propo-

sition) q (is true)” (the mathematically succinct way to write this is

p ⇒ q). Logical probability makes statements about the conclusion of
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(1) like this:

0 ≤ Pr(q|p) ≤ 1. (2)

(Incidentally, writing (1) like it is instead of p ⇒ q makes it easier

to see how (2) arises: we could write (2) as Pr(p ⇒ q) but this gives

the feeling that we’re asking about the probability of the implication

“⇒” and not about the truth of q; the implication being false unless q

is true, but see, e.g., Adams (1998) who writes it in in the alternative

manner). Cox (1961), and like those in the logical probability tradition

before him (de Laplace, 1996; Jeffreys, 1998; Keynes, 2004; Jaynes,

2003), states that if the limits 0 or 1 apply to the conclusion q of a

given argument with premiss p, then q is, respectively, certainly false or

certainly true. When the limits are reached, then the logical connective

(between q and p) is said to be deductive. If the limits are not reached,

then the logical connective is said to be non-deductive. Non-deductive

arguments may be inductive, or they may be otherwise. The arguments

from p to q are either valid if they are deductive, or invalid if they

are not deductive. Invalid does not imply unreasonable; neither does

deductive imply reasonable.

Here is a simple example of a deductive argument that is not reason-

able (in the sense of relevance) adapted from from Schechter (2005): “If

it is raining now, then red is a color. It is raining now. Therefore, red
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is a color.” This is a valid argument in classical logic because the im-

plication is always true (at least, when it’s raining), as red is certainly

a color. But the two concepts—color and rain—have no relevance to

one another.

Recall these common definitions: contingent means not necessarily

true or false, and an observation statement or event is some thing that

can happen (is not necessarily false or impossible) in the given context

(examples will be given below).

Inductive arguments—which are arguments from contingent premisses

which are premisses that are, or could have been, observed, to a con-

tingent conclusion about something that has not been, and may not

be able to be, observed—are, of course, central in probability. In an

earlier paper (Briggs, 2006), I started with an example (due to Stove

(1986), borrowing from Hume (2003)) of an inductive argument which

everybody believes is reasonable. That was, (p =)Because all the many

flames observed before have been hot, that (q =) this flame will be hot.

Notice that no measure of reasonableness is given, no measure of how

true the conclusion q is with respect to its premiss. We can give such

a measure, and that we can do so is explained using the principles of

logical probability (which I do not prove here; but see the references

below).

The flames argument is inductive. Not all non-deductive arguments

are inductive. Carnap (1950), the most widely known proponent of
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logical probability in the 20th century, unfortunately had the habit

of calling all non-deductive inferences ‘inductive’, which, among other

things, lead to a confusion about what logical probability is, and it is

this confusion that is in part responsible for logical probability’s current

refugee status in statistics, Franklin (2001). This is fully described

Stove (1973, 1986). In any case, I do not follow Carnap’s terminology

here, though I use deductive and non-deductive logic in what follows.

The main purpose of this article is to survey the most common ar-

guments used in assigning probabilities to uncertain events where the

event can happen in a finite number of (known) ways. These ways are

usually assigned equal probability. The usual reasons given for equi-

probable assignment are: ignorance, “no reason” or indifference, non-

informativeness, symmetry, randomness, and some very well known

mathematical arguments. All of these arguments, by no means mutu-

ally exclusive, will be shown to be flawed, or to be misleading, or to

imply the necessity of subjectivity when it is not needed. Instead, an

old argument, called the “statistical syllogism”, will be re-introduced.

The statistical syllogism avoids the problems inherent in the others,

with the added benefit of clearly and completely delineating the infor-

mation used in a given problem.
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2. Ignorance

To stress: logical probability concerns itself with assigning probabil-

ities to the conclusions of arguments with explicitly stated, and fixed,

premisses. It is easy to assign probability when the argument is deduc-

tive: the probability being 0 or 1. But, of course, most arguments are

not deductive: that is, they are non-deductive. Not, as is commonly

assumed, all non-deductive arguments are inductive. For an example of

a common, non-inductive (and non-deductive) argument, suppose we

have definite knowledge, labelled ec, that M is some non-contradictory

contingent statement, proposition, or description of an event, and t

any tautology. That is, we know that M is not necessarily true or

false; we also do not know, we are ignorant, whether M will happen.

The argument:

t
ec

M
(3)

is not valid (and is read “t and ec, therefore M”; or t ∧ ec ⇒ M).

Writing out details in this manner makes clear the tacit process of

argumentation that is part of any prior probability assignment: all of

our evidence is first amassed and then explicitly laid out before the

probability assignment is made. The advantage of writing things in

this extended manner is to very carefully bare what the arguments are

actually saying.
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The most common tautologies used in cases like this are t =“I am

ignorant about M , but I know it can be true or false,” or t=“M will

happen or it won’t”; both of these ways of writing t implicitly attach

the definite knowledge ec that M is contingent, except that the first

mistakenly adds “I am ignorant” since we know of M ’s contingency.

Now, it is true that t; or the statement t is always true. A principle of

logical probability gives:

0 < Pr(M |t, ec) < 1. (4)

And that is the best we can ever do with only the definite knowledge

that M is contingent (e.g., Keynes (2004)). This point, which has

caused much confusion, is well worth reflecting upon, and which is

amplified below. It follows from the well known logical fact that it is

impossible to argue validly to a contingent conclusion given a necessar-

ily true or tautologous premiss. This result, known since Aristotle, is

not dependent on a particular t; any tautology or necessary truth will

do.

Statements about the probability of M that lack evidence (other

than t and ec) frequently write (4) as “0 < Pr(M) < 1”: the missing

evidence to the right of M , since it can be anything, is implied. This

is usually harmless enough, but it can lead to troubles.

Now, the probability statement (4) represents the best (in the sense

of most precise statement) that can be said in the face of no evidence,
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except for the definite evidence that we know M is contingent: (4) is,

or should be, the probabilty assigned in the face of this positive knowl-

edge. Since this probability is not definite, we cannot move towards

definiteness using the rules of the probability calculus unless we learn

something more about M .

Of course, the situation so far is not ignorance, since we have al-

ready specified that we know M is contingent. Suppose instead that

somebody asked you, “What is the probability of M?” and refused to

tell you anything about M : it may be contigent, it may be necessarily

true, or M may even be complete gibberish. Then no probability at all

can be assigned. If you do assign a probability it is because you are

adding information that was not given to you, information you suppose

that is true, but that may be false. The argument is changed and you

cannot say your assignment is based on ignorance.

Some statisiticians—of the (subjective) Bayesian persuasion—would

not like to settle for (4), which is a vague enough statement about M ,

and would insist that we find some concrete real number r such that

Pr(M |t, ec) = r. To find this number, there is usually an appeal, to

the utterers of (4), to announce some subjective opinion they might

have about M , or even, if it can be believed, about how they would

take bets with the Deity (or, for the secular, with Mother Nature)

over the truth of M . This line was begun by Ramsey and de Finetti,

and is summarized in e.g. (Press, 2003). I find this approach wholly
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unsatisfying. And so do those who still call themselves frequentists,

and who still do so, at least in part, because of their distaste with this

over reliance on subjectivity and insistence on resting probability upon

a base of ‘gambling’ and ‘betting.’

Not all Bayesians would insist that you must say how you’d bet for or

against M . Some try to find r by an argument like the following: “Well,

M can be true, or it may be false. So it must be that Pr(M) = 1
2
.” No,

it musn’t. The first sentence to this argument is just t, and nothing has

been gained. The step from the conclusion to the probability statement

is therefore arbitrary (as many have felt before; e.g. (Fisher, 1973)).

The argument can be modified, by inserting some additional evi-

dence: say, e◦ =“M is equally like to be true or false”, which I hope

you will agree is the same as saying e◦ =“Pr(M |t) = 1
2
.” The argument

is then:

M is true or it is false

Pr(M |t) = 1
2

Pr(M |t) = 1
2

. (5)

This is a curiously dogmatic argument; nevertheless, it is a valid one;

however, the (major) premiss is the same as the conclusion, which isn’t

wrong, but it is begging the question. This is usually and loosely called

a fallacy, but the conclusion does follow from assuming the premisses

are true, therefore the argument is valid: it is just of no use. (A
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helpful way to read this argument is to say “p is true, therefore p is

true.” Attaching the tautology t, or any other tautology or necessary

truth, changes nothing; it is then “p&t is true, therefore p&t is true.”)

There is still the matter of assigning a probability statement to the

conclusion of (5), which is:

Pr

(
“ Pr(M |t) =

1

2
)” | e◦, t

)
= 1, (6)

a statement which is cruicial to understand: it just says that the con-

clusion deductively follows from the premisses.

The argument (5) is usually recognized for what it is, and instead,

in their search for an r, people will more likely say “Well, M can be

true, or it may be false, and I have no reason to think that it is false or

that it is true. I am indifferent. So it must be that Pr(M) = 1
2
.” This

kind of argument is sometimes called the “Principle of Indifference,”

advanced by Laplace and Keynes (2004) and criticized in e.g. Howson

and Urbach (1993). It is the “indifference” or “no reason” clause that

is the start of troubles.

3. No Reason & indifference

The minor premiss in (5), “Both [possibilities for M ] are equally

likely” is evidently itself a conclusion from the premiss, “I have no

reason to think that M is false or that it is true,” or “I am indifferent

about M .” Now, this argument, in its many forms, has lead a happy

life. It, or a version of it, shows up in discussion of priors frequently,
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and also, of course, in discussions about model selection, e.g. (Bernardo

and Smith, 2000). But it is an argument that should not have had the

attention it did. For we can rewrite it like this :

I do not know—I am ignorant; I have no reason

to know—whether M is true or false, but it can

only be true or false.

M (7)

The conclusion to (7) is usually assigned probability Pr(M) = 1
2
. This

argument, I hope you can see, is not valid: the conclusion certainly does

not follow from the premiss, and the probability statement is arbitrary.

Here’s why. This argument is valid:

M is true or it is false

I do not know—I am ignorant; I have no reason
to know—whether M is true or false, but it can
only be true or false.

(8)

It should now be obvious that the conclusion is nothing more than a

restatement of the initial tautology! To be explicit: saying you do not

know anything about M , in English, means you know nothing, and

therefore cannot assign any probability, not even the bounds of (4).

But if you are saying you do not know whether it is true or false, this

is the same as saying that you know that it can be true or false, that is,

t ∧ ec. So, despite our repeated insistence of “ignorance,” we are back

to (4), which is to say, right where we started. It should, therefore,
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be—but it is not—astounding that people have instead come to the

probability statement “Pr(M) = 1
2
” for the conclusion of (7).

This leaves “indifference”, which isn’t exactly wrong, but it has un-

necessary connotations of subjectivity, and, for some, a certain impli-

cation that the probabilities are equal (and so begs the question). The

subjectivity is implied in the sense that we are setting the probabili-

ties by our will, or that, somehow, our opinions matter as to what the

probabilities are (see Franklin (2001) for a discussion of how Neyman

used a similar trick applied to confidence interval interpretation).

4. Symmetry

Up to this point, I have been very careful not to give an example

for M , some concrete, real-world thing upon which to fix the idea

in your mind. This was on purpose. Because it is difficult, if not

nearly impossible, especially if you are a working statistician, to avoid

adding hidden premisses to (3) or (7) once you have such an example

in mind, and then to criticize the conclusion that (4) is indeed valid.

To emphasize: (4) is the correct statement to make given that the only

definite evidence for M is t and that, ec, M is contingent.

To validly arrive at an r, new evidence about M must be added.

These additional premisses have to be of a certain concrete character

themselves. They cannot be anything like “M can be true or false”

or any other restatement of t. They cannot contain the probability
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statement of the conclusion, as in “M is equally likely true or false.”

Nor can they measure some form of ‘ignorance,’ because, at the most,

that is nothing different than “M can be true or false.” The best—in

the sense of being the most precise—probability statement that can be

made given these arguments is (4). So if we are to find an r what can

these additional premisses be?

Before I tell you, let me first fill in the blank about M , and give you

a real example. When I do, unless you are a highly unusual person,

you will almost certainly instantly think, “Of course the probability of

M is a 1
2
! What is the problem!”

Let M represent the fact that I see a head when next I flip this coin.

Are you with the majority who insist that the probability of M must

be 1
2
? Before you answer, notice that the ‘coin flip’ M is entirely dif-

ferent from any other M ′ where all you know is that M ′ is contingent.

For example, if instead of a coin flip, suppose M represented the out-

come of an experiment where you to open a box and examine some

object inside and note whether you can see an ‘H’. Now all you know

is that M is contingent and can be true or false. Based solely on the

information you have, you do not know any other possibilities. You do

not know that an ‘H’ or some other letter or object might appear. You

do not know, even, whether a snake may jump out of the box. If you

imply that because the question asked something about an ‘H’, that
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the result must be ‘H’ or some other letter, probably a ‘T’, then you

are adding evidence that you were not given.

Back to the coin flip. Why is the probability of M 1
2
? Symmetry,

perhaps? As in, “It can fall head or tail and there is no reason to

prefer—I am indifferent—to head over tail”? But isn’t that the same

as ignorance, that is, the same as the tautology and knowledge of con-

tingency? It is. Because substitute ‘be true’ for ‘fall head’ and ‘be

false’ for ‘fall tail’ and you are right back at the tautology. Or symme-

try as in, “Heads and tails are equally likely because I have no reason

to think otherwise”? Again, “no reason to think otherwise” or “Heads

and tails are equally likely” or “indifference” are begging the question

or can be misleading.

The anticlimatic answer for assigning probability to a definite M is

the statistical syllogism, as defined by Williams (1947) in the coin flip

example:

Just 1 out of 2 of the possible sides are Heads

M is an side

M is a head (9)

This inductive argument is, of course, invalid. But we can now justify

saying Pr(M |es) = 1
2
, where es is the evidence of the two premisses (and

which together imply ec). Adding arguments to es about symmetry,

or ‘fair’ coins, or ignorance does not change the probability of the
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conclusion, because these arguments are all equivalent to adding t or

“P (M |t) = 1/2” to the list of premisses. A ‘fair’ coin, after all, carries

with it the assumption that the probability is 1/2: which is begging

the question.

Symmetry has often been used, and objected to, as a principle to as-

sign probability, e.g. Strevens (1998); Bartha and Johns (2001); Hájek

(2007). Arguments based on symmetry tend to be misleading because

the examples are always chosen in such a way that they are “physically

balanaced” or physically symmetric, which gives rise to a certain con-

fusion. For example, Strevens (1998) imagines that one side is painted

red on a dodecahedral die and asks the probability (in a ‘fair’ roll)

of seeing the red side. He assigns 1/12 because of (physical) symme-

try. Hájek (2007)—and many, many other authors, invoking something

about a “priviledged partition”—then argue this assignment is indeed

correct under physical symmetry (one partition of the outcome). But

(in another partitioning) they say that you either see the red or you

don’t, so that under this view, the probability is 1/2. Both probability

assignments can’t be right, so logical probability itself must be flawed!

Well, the “either see red or not” is the tautology, which is very dif-

ferent information than physical symmetry: these two different pieces

of information should certainly give different probability assessments,

so it is to logical probability’s credit—and not its detriment—that it

does so. (And we have already seen that under the “see red or not”
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partition, the answer is (4) and not 1/2. Also, all priviledged partition

arguments have a distinct subjective quality about them: why choose

any partition not based on the statistical syllogism unless you are intent

on creating difficulties where they do not exist?)

Again, Streven’s die is physically symmetric (though there is also, in

the literature, considerable and legitimate worry about how we would

know that the device is perfectly symmetric etc. etc.), and so the prob-

ability assignment seems natural. And it is this conicidence of physical

symmetry and the correct (as I will argue) probability assigment that

has lead to all kinds of confusion about “physical” probability. This

confusion would disappear were we to consider the problem under the

light of the statistical syllogism (clearly, much more on this subject can

be said, but this is not the goal of this paper).

To clarify that physical symmetry is not needed, consider this ex-

ample: suppose I have an n-sided object, one side of which is painted

red: what’s the probability of red? My object may—or may not—be

physically symmetric. It may be some amorphous blob, no two sides

having the same surface area. It may be physically symmetric down to

the quark. But you are not entitled to say it is physically symmetric

without additional evidence. Just as equally, you do not have any evi-

dence that my object is physically asymmetric. And so, you can only

appeal to the statistical syllogism.
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Another example. Suppose there are 10 men in a room and just 9 of

these 10 are Schmenges. M is a man in the room. The conclusion “M

is a Schmenge” by the statistical syllogism has probability 9
10

. Note

that you rarely hear the term “fairness” applied to situtations like this

as you do with coins and dice(is there such a thing as a ‘fair’ room full

of Schmenges?).

To summarize, our evidence es for M , in some concrete situation like

in these examples, is that M is contingent (es encompasses ec) and that

we know or assume that it can happen in any of m out of n different

ways: this justifies our saying Pr(M |es) = m
n

(the tautology t is still on

the right hand side with es, but supressed for ease of notation).

I have yet to find anybody who disagress with the probability as-

signments implied by the statistical syllogism (except for the com-

mon mistaken “priveledged partition” arguments like those in Hájek

(2007)). Equally compelling, there is no argument against the statis-

tical syllogism (as described fully in (Stove, 1973, 1986)). Even more

importantly, and perhaps surprising to some, is that the statistical syl-

logism is itself derived from uniform probability across the individual

events that make up the “sample space”: see a complete discussion

in Stove (1986) pp. 92-97, who credits Carnap (1950) with the first

proof of this. In the case of the Schmenges, this is men in the room,

or: Pr(man 1 Schmenge|es) = dots Pr(man 10 Schmenge|es). That is

to say, if you are convinced of the probability assigned implied by the
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statistical syllogism, you must admit the equi-probability of the under-

lying events.

It is true that the statistical syllogism gives the same results as the

traditional arguments of ‘ignorance’, ‘fairness’, or symmetry give, but

it does not carry the same baggage. The other arguments, while they

contain the necessary information that M is contingent and the suffi-

cient information that M has n = 2 or n = 10 etc. states, also carry

extra hidden assumptions, information that is not explicit and that can

cause consternation and disagreement, because not everybody would

necessarily put the same value on these hidden assumptions. There

is no hidden information to the statistical syllogism. Except maybe

something having to do with “randomness.”

5. Whither randomness?

An objection to the statistical syllogism might have something to do

with “randomness”, and how it is invoked to select, or to “sample”,

say, men from a room. This may seem fair line of inquiry because

of practical interest in the conclusion M . I may want to act like a

subjective Bayesian and bet, say, on the chance that the man I grab is

a Schmenge, or there might be other reasons why I want to accurately

assess the probability of M . But arguments about randomness are, just

as are arguments about ignorance, irrelevant (Campbell and Franklin,

2004).
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If you were to grab a man out of the room randomly: how can you

be sure that the probability that he is a Schmenge is 9
10

? Suppose

you were to “sample” the men by opening the door and grabbing the

nearest man and noting whether or not he is a Schmenge. Or perhaps

that doesn’t sound “random” enough to you. Instead, you order the

men inside to polka madly, to run about and bounce off the walls and

to not stop; then you reach in a grab one. This sampling procedure

becomes an additional premise, so that we have:

(es1) Just 9 out of the 10 men are Schmenges

(es2) M is a man in the room

(er) Men are arranged in the room randomly

The man M that I grab will be a Schmenge (10)

Here, I take “randomly” to mean, as it can only mean, that “I have

no idea—I am ignorant—of how the men are arranged”. To show this,

first suppose that all we know is that there are men in a room, but

nothing else. That is, our only evidence is er, which is just another

way of saying, “There are men in the room, and I have no idea who

they are or how they are arranged.” Tacit in this is the idea that there

may be some Schmenges in the room, which, of course, means that

there may not be any. That is, er is equivalent to, “M may be true

or it may be false”. This is our old friend, the tautology t, which we
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have already seen adds nothing to the argument that would allow us

to assign a definite probability to the conclusion.

Now, if you did know something about the way the men were ar-

ranged in the room, then this is evidence you must include in the list

of premisses, where it would quite legitimately and naturally change

the probability of M . But just saying your evidence is “random”, or

your experiment was “randomly” sampled, adds nothing. This should

not be surprising, as Bayesians have long known that randomness is not

a concept that is needed in experiments such as patient assignment in,

e.g., clinical trials Howson and Urbach (1993).

It should also not be necessary to say that we do not need to assume

anything about infinite “trials” of men in rooms to arrive at the proba-

bility of M . Some (objective) Bayesians try this kind of argument in an

attempt justify their priors by invoking something called the Principal

Principle, which states

that if the objective, physical probability of a random

event (in the sense of its limiting relative-frequency in

an infinite sequence of trials) were known to be r and

if no other relevant information were available, then the

appropriate subjective degree of belief that the event will

occur on any particular trial would also be r: (Howson

and Urbach, 1993, p. 240).
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Ignoring the fact that we can never know what happens after an infi-

nite amount of time, and so can know r, or that we cannot imagine an

infinite number of rooms filled with Schmenges, but pretending that

we can, the Principal Principle says “Pr (M |Pr(M) = r) = r” (it adds

the premiss “Pr(M) = r” which is taken to be the ‘objective’ or phys-

ical probability of M), but which we can now see is just begging the

question.

6. Mathematical attempts

The discussion to this point has been, of course, philosophical, an

approach that will certainly induce discomfort in some because of its

seeming lack of rigor. So to stiffen the discussion, here are two, of many,

well known mathematical approaches to the problem of justifying equi-

probable assignment. The results from both agree with the results

from the statistical syllogism; nevertheless, I think both arguments

fail, in the sense that they are circular, because they both assume the

statistical syllogism or equi-probability in their proofs.

Both of these arguments start with the definite knowledge e that

M can be decomposed into a finite number of possibilities (like our

Schmeges) M1, M2, . . . ,Mn, n < ∞. This, again, already carries with

it the knowledge that M is contingent.

First permutation argument (logical probability) Jaynes (2003):

Introduce evidence e which states that either M1 or M2 or etc. Mn
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can be true, but that only one of them can be true. In the case where

M is a coin flip, the result can be either M1=“head” or M2=“tail”.

Thus, Pr(M1 ∨M2 ∨ · · · ∨Mn|e) =
∑n

i=1 Pr(Mi|e). We want to assign

the probabilities Pr(Mi|e) for i = 1 . . . n. The set of possibilities is

M = {M1, M2, M3, . . . Mn}. Let π be a permutation on the set {1, 2}.

Let M ′ = {Mπ(1), Mπ(2), M3, . . . Mn}. That is, the set M and M ′ are the

same except the first two indexes have been swapped in M ′. The evi-

dence e is fixed. Therefore, it must be that Pr(M1|e)M = Pr(Mπ(2)|e)M ′

and Pr(M2|e)M = Pr(Mπ(1)|e)M ′ . Jaynes then makes a crucial step,

which is to add evidence to e which states that the evidence is “indif-

ferent” to M1 and M2, i.e.

if it [the evidence] says something about one, it says the

same thing about the other, and so it contains nothing

that would give [us] any reason to prefer one over the

other. (p. 39, emphasis mine)

Accepting this for the moment, e then says that our state of knowl-

edge about M or M ′ is equivalent, including the order of the in-

dexes. Thus, (note the change in indexes) Pr(M1|e)M = Pr(Mπ(1)|e)M ′ ,

Pr(M2|e)M = Pr(Mπ(2)|e)M ′ and Pr(Mj|e)M = Pr(Mj|e)M ′ , j = 3, . . . , n.

Which implies Pr(M1|e)M = Pr(M2|e)M : that is to say, equi-probable

prior assignment.
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This argument is fine if what Jaynes says in the quotation holds.

But we can see in it the presence of two tell-tale phrases, our old

friends, “indifferent” and “no reason”, which are used, and are needed,

to justify the final step. This is just begging the question all over again,

for how else could the evidence e be “indifferent”? That is, Jaynes has

assumed the statistical syllogism as part of the evidence e, which is

what he set out to prove.

Second permutation argument (finite exchangeability) Diaconis

(1977): This argument is more mathematically complicated and was

originally used to justify a use of de Finetti’s representation theorem

for finite sequences. Recall what this famous original theorem does:

it gives an infinite sequence of exchangeable 0-1 variables a formal

(induced) representation as a probability model with a unique measure

of the probability model’s parameters. The key, of course, is that the

sequence must be infinite. Diaconis, after showing that some finite

exchangeable sequences fail to be represented as probability models

with unique measures, goes on to offer a proof for certain other finite

exchangeable sequences that do.

I follow Diaconis (1977) as closely as possible, almost copying the

theorem as it stands but using my notation; interested readers should

consult the original if they are interested in the details, particuarly since

the original uses graphical notions which I do not elaborate here. Let

Pn represent all probabilities on M =
∏n

i=1 Mi where Mi = {0, 1},∀i,
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where M is a finite (n < ∞) sequence of 0-1 variables. Pn may be

thought of as the probability models on M : it may be written in coor-

dinate form by p = (p0, p1, . . . , p2n−1) where pj represents the outcome

j where 0 ≤ j < 2n is the binary expansion of j written with n binary

digits. Diaconis gives the example if n = 3, j = 1 refers to the point

001. Let M(m, n) be the set of j with exactly m ones. The number of

elements in M(m, n) is
(

n
m

)
: this much is true—the number of elements

in M(m, n) is
(

n
m

)
—regardless of what the actual probabilities of any

outcomes are.

Now, let En be the exchangeable measures in Pn: En will take the

place of the measure on Pn’s ‘parameters’. The theorem is stated thus:

En has n+1 points e0, e1, . . . , en, where em is the measure putting mass

1/
(

n
m

)
at each of the coordinates j ∈ M(m, n) and mass 0 at the other

coordinates. (Uniqueness of each point in En is also covered, but not

of interest here.) How is this theorem proved?

en represents the measure of drawing n balls without replacement

from an urn with n balls, m of which are marked 1, and n−m marked

0, so each en is exchangeable. If en can be written as a proper mixture

of other exchangeable points, has the form en = pg1 + (1− p)g0, where

0 < p < 1: also, g1, g0 must assign 0 probability to the outcomes

which en assigns 0 probability. But because of exchangeability of the

coordinates j ∈ M(m, n) g1 and g0 must be equal. And because the
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probability for any j ∈ M(m, n) must sum to 1—and here is the big

assumption used in the proof—the mass of each coordinate is 1/
(

n
m

)
.

Clearly, the intution that gave rise to these particular masses asserted

in the proof came from the fact that the number of elements in M(m, n)

is
(

n
m

)
. However, other masses work too, as long as they sum to one

and assign a probability of 0 to the other coordinates not in M(m, n).

For example, for j ∈ M(m, n) assign 1/2m for the first m coordinates

and 1/(2(
(

n
m

)
−m)) to the remaining

(
n
m

)
−m coordinates.

The reason that the 1/
(

n
m

)
mass was chosen is understandable, but

there was no explicit reason for it (other than having the probabilities

sum to 1) and the desire for symmetry and the equi-probable assign-

ment. So again, the statistical syllogism/equi-probability is assumed.

7. Examples

Suppose you are considering M1 and M2 as the only competing mod-

els for some situation. Then, using the statistical syllogism and the

logical probability assignments it implies as above, Pr(M1 ∨M2|es) =

Pr(M1|es)+Pr(M2|es) = 1 and Pr(M1|es) = Pr(M2|es) = 1
2
. This is the

justification for starting with equal probability in model selection. Af-

ter x is observed, then it is easy (in principle) to calculate Pr(M1|x, es)

and Pr(M2|x, es).
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It is no surprise that this is the same point reached by appealing to

the Principle of Indifference (or even the Principle of Maximum En-

tropy for a finite number of model choices; Jaynes (2003)). The statis-

tical syllogism gives the same answers as the Principle of Indifference,

but not by the same route and, again, without the hidden assumptions

or metaphysical baggage. The built-in question-begging of that princi-

ple is gone, and there is no appeal to subjectivity, which many find so

distasteful.

Arguments against objectively assigned probabilities often centers on

evidence external to that used by the authors. The best known example

is Laplace’s Rule of Succession used for finding the probability of seeing

the sun rise tomorrow (read Jaynes (2003, chap. 18) for a fascinating

look at this oft-cited topic: what follows here is a simplification and

a change of what Laplace actually argued, he was trying to find the

value of a continuous parameter; this changes here to the probability

of a proposition). That is, certain evidence e is given for the truth of

M , and a probability is then logically assigned to M . But the critic

has in mind evidence e′, which may contain e but also has arguments

different than e, which would naturally lead to a different probability

assignment. The probably assignment induced by e is then critized as

“absurd” and the principles of logical probability which gave rise to it

is rejected. This is overwhelmingly true for Laplace’s example.
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Along this same line, it is often heard that one must select priors,

either on models or parameters, before seeing the data, lest the data

somehow modify your pure ‘prior’ thoughts. This view is false, at least

in the strict logical sense, because whether you apply the statistical syl-

logism before or after seeing your data it is irrelevant to the probability

you assign. This probability assignment is based only, for example in

the case of model selection, on the argument M1 ∨ M2 is an outcome

etc. The probability assignment “Pr(M |es) = 1/2” is true no matter

when in time it was made.

8. Conclusion

Logical probability is a much neglected subject in the statistical com-

munity. The only book in many years to appear on the subject is Jaynes

(2003) (other books in the maximum entropy (MAXENT) traditional

have been published, but these are not of the same scope as Jaynes).

The Bayesian revolution from the later part of the 20th century, re-

markable in many ways, mainly eschewed logical probability and fixed

on the idea that probabilities are subjective.

It is this focus on subjectivity which has made statisticians com-

fortable using words like “ignorance”, “fair” (though that term pre-

dates the revolution), “no reason”, and especially “gamble”, “indiffer-

ent”,“betting” and so on when they assign probabilities. These terms

feel or are directly subjective; they are words to put your beliefs behind.
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And once you have brought in belief, you make it difficult to discover

the hidden assumptions behind your belief. But words like “ignorance”

etc. are misleading, as was shown, in assigning probabilities, and they

should be eliminated from the discussion.

In conversation, I have had it pointed out that the same results

as the statistical syllogism can be had by appealing the the Principle

of Maximum (information) Entopy. I agree with this. However, the

apparatus of MAXENT is certainly not needed; and it is not clear

that the assumptions etc. of that system are simpler than those of the

statistical syllogism. The uniform probability assumption over events

that is used to derive the statistical syllogism is just true; but is it true

that the probability assignment should also maximize entropy? Maybe.

But if you are trying to convince somebody of the correctness of logical

probability, it should be clear that you introduce MAXENT at such an

early stage, you are then asking a lot more from your audience.

I attempted to cast light on a few common hidden assumptions in

the simplest possible situations. It is certainly not a complete answer

to the question of how to assign probabilities in an objective way in all

models. The statistical syllogism can clearly be applied to assign priors

on probability model parameters when those parameters can take a fi-

nite number of values or states. The class of probability models which

contain such parameters may or may not be very large, but it is at least

not empty, though it of course does not contain the most frequently
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used probability models, such as those, say, from the exponential fam-

ily. I make no attempt in this paper to justify, or modify, the use of

the statistical syllogism in the case where the number of outcomes is

countably or uncountably infinte, as in the case of parameters in mod-

els like the normal distribution. Jermyn (2005) is a good starting place

for these topics.

But, however simple, the statistical syllogism clearly works and does

not suffer from the same flaws as earlier arguments—arguments which

may have given the same answers sometimes, but come loaded with

hidden assumptions, assumptions which have been barriers to accep-

tance of Bayesian methods. Too, the statistical syllogism is completely

objective and it eliminates any hint of “randomness” and “chance” and

the complexity these terms imply. To this, much of this paper may seem

like quibbling. After all, the results using the statistical syllogism agree

with those (at least in these examples) that would be had appealing

to “no reason” etc. But the impression of agreement is false. For one,

people who would insist, for example, that all probability calculations

cannot begin before a properly defined measure space has been care-

fully laid out, should not quail from a demand for the preciseness of

language used in describing such models. More importantly, the terms

“no reason” etc. are all improperly defensive and are negative. Using

them with respect to assigning probabilities naturally creates a certain

suspicion in those who hear them that something funny is going on.
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The terms also over-emphasize, and even use when they should not,

subjectivity. With the statistical syllogism, these problems disappear.

For one: there is no subjectivity; the probability assignment follows

logically from the information given. And the statistical syllogism em-

phasizes the definite, positive knowledge that exists. People, I believe,

would be more inclined to to try to understand Bayesian methods (and

the multitude of shortcomings of classical probability) if we who pro-

mote them are more careful—and justifiably positive—in our language.

Several attempts at mathematically assigning priors were shown to

be begging the question. Other mathematical attempts at assigning

equi-probable priors, such as those by e.g. Kerns and Székely (2007),

which use signed measures, may be be useful, but since signed measures

imply “negative probability,” it is not clear that these attempts belong

to applied (real-life) statistics.
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