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abstract

Bayesian statistical models were developed for the number of tropical cyclones and

the rate at which these cyclones became hurricanes and the rate at which hurricanes

became category 4+ storms in the North Atlantic using data from 1966-2006, and from

1975-2006. We find that, controlling for the cold tongue index (CTI), North Atlantic

oscillation index (NAOI), and the Atlantic multidecadel oscillation (AMO), that it is

improbable that the number of tropical cyclones has linearly increased since 1966, but

that they have since 1975. The differences between these two results has to do with

these number of storms at that the start of these two periods: it was easier to say a

linear increase was present starting from circa 1975 since the storms in that period

were at a low point. The rate at which storms become hurricanes appears to have

decreased; and the rate at which category 4+ storms evolved from hurricanes appears to

have increased. Both of these results are also dependent on the starting year. We also

investigated storm intensity by measuring the distribution of individual storm lifetime

in days, storm track length, and Emanuel’s power dissiptation index. We find little

evidence that mean individual storm intensity hass changed through time, but we find

that the variability of intensity has certainly increased. Any increase in cumulative

yearly storm intensity and potential destructiveness is therefore due to the increasing

number of storms and not due to any increase in the intensity of individual storms. CTI

was not always significant: but lower CTIs were associated with more storms, higher

rates of conversion, and higher intensities. NAOI was only weakly associated: the effect

was negative for the number of storms, the rate of hurricanes evolving from storms, and

intensity, but it was positive for the rate of category 4+ storms evolving from hurricanes.

AMO was rarely significant, except in explaining number of storms using the 1966-2006

data. Its direction was always positive as expected, however: higher values of the AMO

were associated with more storms, higher rates of conversion, and higher intensities.
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1. Introduction

It is important to be able to statistically characterize the distribution of the number

of storms in the North Atlantic, especially if this number is increasing or the intensity of

tropical storms are changing. Several studies have examined this, e.g. (Landsea et al.

2006; Solow and Moore 2004). One of the most important recent papers is Emanuel

(2005), in which he argued that hurricanes in the North Atlantic have become more

destructive over the past 30 years. To measure potential “destructiveness”, he developed

a measure called the power dissipiation index, which is a function of the cubed wind

speed of a storm over its lifetime (see Sec. 2 for a precise definition). In his original

paper, this index was not just a measure of a single storm’s intensity, but a cumulative

index over all the storms during the year. Peilke (2005) and Landsea (2005) criticized

the data analysis method used to demonstrate that the index was increasing; by pointing

out that the smoothing method used on the raw time series data was slightly flawed,

that errors in the observations should lead to a less certain statement about increases,

and that the wind speed adjustments used by Emanuel were too aggressive.

Our observation is that the lumping together of all the storms within a year has

lead to a different interpretation of what exactly is increasing: storm number or (a

function of) windspeed. Other explanations of Emanuel’s findings may be that the

number of cyclones has remained (distributionally) constant, but that average storm

intensity has increased. Or it may also be that the number of cyclones has increased

but that the intensity of individual storms has remained constant, or even decreased.

Other combinations are, of course, possible: both storm frequency and individual storm

intensity might have increased. We examine these scenarios below.

A first step in such an analysis was taken by Elsner and Bossak (2001), who
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examined the climatology and seasonal modeling of hurricane rates using a series of

Bayesian hierarchical models. Using this modern approach allows modelers to easily

make probability statements about important parameters of storm correlates and to

specify the uncertainty of future predictions. Here, we use a model that, as a base, is

of the exact same form as Elsner and Jagger (2004) for modeling storm number; we

present an innovative technique to model the rate at which hurricanes evolved from

tropical storms, and the rate at which category 4+ storms evolved from hurricanes.

Other current examples of the same type of Bayesian statistical models used to model

tropical storm behavior are: Zhou and shin Chu (2006), Chu and Zhao (2004), Elsner

et al. (2004).

Elsner and Jagger (2004) continued the Bayesian modelling line by controlling, in

their models, for the influence of the cold tounge index (CTI) and the North Atlantic

oscillation index (NAOI). They found that both of these indices were well correlated

with the mean hurricane number. We also control for these indicies in our models below.

Elsner et al. (2001) investigate the relationship between ENSO, of which the CTI is a

good indicator, and hurricane numbers. Hoyos et al. (2006) examine these and other

factors that may contribute to increases in the mean frequency of hurricanes.

We also control for the Atlantic multidecadal oscillation (AMO) sea surface

temperature (SST) index, e.g. (Knight et al. 2005); the AMO is a detrended (anomaly)

measure of sea surface temperatures (the exact definition is in Section 2b). Landsea

et al. (1999) found that multidecadel variability, such as that displayed by the AMO,

and not necessarily linear trends were identified with hurricane activity. The AMO index

has been found to be important in explaining some of the variability in rainfall and

river flows in the U.S. (Enfield et al. 2001). It has also been identified to be associated
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with summer climates in Europe and North America (Sutton and Hodson 2005).

However, Mann and Emanuel (2006) caution that relying on the AMO assumes that

any underlying trend in SSTs is assumed to be linear, which of course may not be the

case. They also argue that there is no apparent role of the AMO with tropical cyclone

activity, which they measure by a crude linear correlation over yearly summaries of the

tropical cyclone data. We argue below that such yearly sums can give a misleading

picture as to what aspects, if any, of tropical cyclones are changing over time.

Elsner et al. (2004) and Jewson and Penzer (2006) examine whether there were

shifts, or change points, in the statistical distribution of hurricane numbers. Both

groups of authors did find likely changes, namely around 1900, the mid 1940s, mid

1960s, and the mid 1990s. These shifts may have been due to actual changes in physical

mechanisms (such as large-scale shifts in the atmospheric or oceanic circulations) or

they may be due to changes in measurements, though all authors agree that the changes

are probably a combination of both. In a recent analysis, Landsea (2007) also argues

persuasively that before about 1966 many hurricanes (let alone smaller storms) were

not counted, and that other aspects of storm quality (such as wind speed etc.) were

observed either with error or just missed. We take this topic up below, but we do not

seek to answer why these changes in the data take place, or even if the dates used to

demarcate “good” observations from “bad” ones are certain. It is clear enough, however,

that the data has changed in character through time. Thus, we build our models using

different ranges of data in an attempt to incorporate this uncertainty.

Kossin et al. (2007) argue that the storm data is rather inconsistent: they propose,

and construct, a statistical reanalysis of hurricane activity using satellite observations

and the Dvorak technique to estimate wind speed (e.g. Velden et al. (2006)) to assist
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in their recreation. We have more to say about this dataset in the Conclusions. But,

obviously, the models we outline below could certainly be used (in part) with the Kossin

et al. database.

Our approach, though similar in the we use Bayesian statistical models, is different

from previous analyses in two ways: (1) we hierarchically model the number of tropical

storms and then the rate that hurricanes arise from them, then the rate that category

4+ storms evolve from hurricanes; as opposed to directly modeling just the number of

hurricanes (or hurricane land falls etc.); and (2) in line with Webster et al. (2005) we

characterize the distribution of storm intensity within a given year and ask whether this

distribution changes through time (in mean and in variance). We investigate storm

intensity in a multi-dimensional way, by measuring storm lifetime in days, storm track

length, and Emanuel’s power dissipation index applied to invididual storms. We fit

linear models and ask whether the data are consistent with linear trends. Now, we

nowhere try to say why, beyond controlling for certain stated variables, any trends are

there (if they are). True causal analyses for such trends are, of course, more important

than these time series models, but being able to identify possible trends, even though

the cause of them is not known, is still of some importance. SSTs in the North Atlantic

have been seen to increase Santer et al. (2006) over the 20th century, and obviously

SSTs are related to tropical cyclones. But again we do not seek to answer why (i.e.

causally) any increases (or decreases) are seen. This is a flaw which statistical models

can never overcome. But where statistical models cannot always answer direct questions

about causation, they can answer questions about data quality and confidence, which is

of course very important for questions about tropical cyclone changes.

We use the hurricane reanalysis database (HURDAT) Jarvinen at al. (1984) and,
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e.g. Landsea et al. (2004). This database contains six-hourly maximum sustained

1-minute winds at 10 m, central pressures, and position to the nearest 0.1◦ latitude and

longitude from all known tropical storms from 1851-2006. A cyclone was classified, using

the Saffir Simpson categorization (Landsea et al. 1999), as a “hurricane” if, at any time

during its lifetime, the maximum windspeed ever met or exceeded 65 knots. Obviously,

this cutoff, though historical, is somewhat aribitrary and other numbers can be used: we

discuss this in the Conclusions below. To investigate the realtionship of North Atlantic

tropical storms with ENSO, we use use the CTI, Deser and Wallace (1990) and e.g. Cai

(2003); Zhang et al. (1997). We use the NAOI from Jones et al. (1997). And we also use

the AMO index, e.g. (Landsea et al. 1999).

Section 2 lays out the statistical models and methods that we use, Section 3

contains the main results, and Section 4 presents the conclusions and some ideas for

future research.

2. Methods

We adopt, as have many before, Bayesian statistical models. An important

advantage to these models is that we can make direct probability statetments about

the results. We are also able to create more complicated and realistic models and solve

them using the same numerical strategy; namely, Gibbs sampling. We do not go into

depth about the particular methods involved in forming or solving these models, as

readers are likely familiar with these methods nowadays. There are also many excellent

references available, e.g. (Gelman et al. 2003).

It is important to control for factors that are known to be related, or could cause

changes in, the frequency of tropical cyclones and storm intensity. There are many
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such possible variables, but we choose the cold tongue index and the North Atlantic

oscillation index as cited, and modeled in a similar way, in the paper by Elsner and

Jagger (2004), and the Atlantic Multidecadel Oscillation as cited by Landsea et al.

(1999). Readers are encouraged to refer to the original sources and references therein to

learn about these indicies.

a. Data

Again, we use the North Atlantic HURDAT reanalysis. We conduct the analyses

using three different starting points: 1900-2006, 1966-2006, and 1975-2006. Just why

these particular dates is explained below; however, the main reason to use the 1900-2006

set, even though it well known that before about 1966 the observations are flawed

(there are both missing observations and observations with measurement error), is for

comparison with other studies. Unlike some other analyses, we use all the storms in

this database and not just storms of a certain classification (i.e. hurricanes or stronger

storms) or in a certain location (e.g. landfalling). This is for two reasons. The first,

and most important, is that we want to examine the complete distributional changes

of storm quality in the Atlantic. That is, if we only examined hurricanes, we may

miss details of smaller storms. For example, if may be that hurricane quality remains

unchanged but that there has been an increase in the number or intensity (or changes

in other qualities) of small storms. Below, we offer evidence that something like this is

indeed the case, as we observe that the variance of intensity has increased through time.

The second reason is that the form of our statistical models is different from previous

analyses: we model the rate at which hurricanes evolve from smaller storms; we do not

directly model the number of hurricanes per se. It is also true that the definition of what
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storm is a hurricane, or a “category” storm, is arbitrary, and it is not a priori clear that

just asking whether hurricane etc. numbers have increased would fully capture what the

data has to say. As such, we want a complete count of all storms regardless of size.

The CTI is a well known index of ENSO and is comprised of an average of the SST

anomalies over 6◦ N to 6◦ S and 180◦ to 90◦: here, we average the CTI (within in a year)

from August to October following Elsner and Jagger (2004). The NAOI is anomaly

of sea level pressure calculated from a station at Gibralter and a station in southwest

Iceland (Jones et al. 1997): here, we average the NAOI from May to June (as was also

done in (Elsner and Jagger 2004)). The AMO index is computed by averaging SSTs

between 75◦ and 7.5◦ W and 0◦ and 60◦ N; here, the monthly AMO was averaged from

June through September. These particular start and stop for averaging points due not

seem especially important to the analysis which follows (in the sense that we also tried

several other monthly averages, with all giving nearly identical results).

Lastly, we do not adjust the observed wind speed in any way (Emanuel 2005;

Landsea 2005; Pielke 2005), as the best way to do this, or even the necessity of doing

this, is not agreed upon.

b. Number of storms

Most statistical analysis focuses on the number of hurricanes or the subset of

landfalling hurricanes, e.g. (Elsner and Bossak 2001; Elsner and Jagger 2004). The

approach here is different. We first model the number of tropical cyclones and then

model whether or not, for any given tropical cyclone, a hurricane evolves from it. We

then model whether a category 4+ storm evolved from this hurricane. Specifically, we

do not separately model the frequency of both hurricanes and cyclones, as doing this
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ignores the relationship of how cyclones develop into hurricanes, and how hurricanes

strengthen.

We suppose, in year i of n years, that the number of storms is well approximated

by a Poisson distribution as in

si|λi ∼ Poisson(λi) (1)

where λi describes the mean (and variance) of the number of storms. It is of primary

interest to discover whether this parameter is changing (possibly increasing) through

time, controlling for known important meterological and oceaniographic variables.

Elsner and Jagger (2004) developed this same model for the number of hurricanes (and

not cyclones per se). Here we adapt it to the number of cyclones, and add in the

possibility that the parameter λ changes in a linear fashion in time (we also, for ease of

reference, adopt some of Elsner and Jagger’s notation). Thus, we further model λi as a

function of the CTI, NAOI, and AMO and allow the possibility that λi changes linearly

through time. We use the generalized linear model

log(λi) = βs
0 + βs

1t + βs
2CTIi + βs

3NAOIi + βs
4AMOi (2)

where the s superscript indicates we are in the storms portion of the model. The prior

for each βs
ki is

βs
ki|γs

k, τ
s
k ∼ N(γs

k, τ
s
k), k = 0, 1, 2, 3, 4 (3)

where τ s
k is the precision (inverse of variance): we also use the standard noninformative

priors

γs
k ∼ N(0, 1e− 6), τ s

k ∼ Gamma(0.001, 0.001). (4)

If the posterior probability Pr(βs
1 > 0|data) is large then we would have confidence that

the mean number of storms has increased over the given time period of the data, after
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controlling for the influence of the other variables. When dealing with time series data,

it is not uncommon for “lag” effects to be listed as explanatory variables (Brockwell and

Davis 1998): for example, the term β5si−1 may be added. However, as we show below,

no lag effects, or other time series-like model components, were found to be necessary in

these models (see Fig. 2 below).

Once a tropical storm develops it, of course, has a chance to grow into a hurricane.

If there are si tropical cyclones in year i the number of hurricanes is constrained to be

between 0 and si. Thus, a reasonable model for the number of hurricanes hi in year i

given si is

hi|si, θi ∼ Binomial(si, θi) (5)

It is possible, however, as with λi, that θi is dependent on CTI etc. and that it changes

through time. To investigate this, we adopt the following logistic regression model

log

(
θi

1− θi

)
= βh

0 + βh
1 t + βh

2 CTIi + βh
3 NAOIi + βh

4 AMOi (6)

where we we again let the priors and hyperpriors be the same form as in the model for

si, and the h superscript indicates we are in the hurricane portion of the model. And

again, if, for example, Pr(βh
1 > 0|data) is large then we would have confidence that the

rate at which the number of storms turn into hurricanes has increased over the given

time period.

Lastly, once a hurricane develops, it has a chance to strengthen into a major

hurricane, or a category 4+ storm. If there were hi hurricanes in year i the number

of category 4+ storms (ci) is constrained to be between 0 and hi. We use the same

binomial model:

ci|hi, ξi ∼ Binomial(hi, ξi) (7)
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and

log

(
ξi

1− ξi

)
= βc

0 + βc
1t + βc

2CTIi + βc
3NAOIi + βc

4AMOi (8)

where the priors etc. are as before and the superscript c indicates we are in the category

4+ portion of the model. The interpretation of βc
1 is analogous to βh

1 etc.

c. Measures of intensity

It may be that the mean number of storms and hurricanes remains unchanged

through time, but that other characteristics of these storms have changed. One

important characteristic is intensity. We define a three-dimensional measure of intensity,

in line with that defined in Webster et al. (2005): (1) the length m, in days, that a

storm lives; (2) the length of the track (km) of the storm over its lifetime; and (3) the

power dissipation index as derived by Emmanuel, though here we apply this to each

cyclone individually. We stress that we compute these measures for each storm; we do

not create cumulative summary measures of intensity for a given year. We say nothing

directly about storm destructiveness (in terms of money etc.).

m was available directly from the HURDAT reanalysis: we approximate the number

of days to the nearest six-hours. Track length was estimated by computing the great

circle distance between succesive six-hour observations of the cyclone, and summing

these over the storm lifetime. The power dissipation index (PDI) is defined by

PDI =

∫ T

0

V 3
maxdt (9)

where V 3
max is the maximum sustained wind speed at 10m, and T represents the total

time that the storm lived. Practically, we approximate the PDI—up to a constant—by

summing the values (Vmax/100)3 at each six-hour observation. The PDI is a crude

measure of the strength of the potential destructiveness of a tropical storm or hurricane,
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as cited by Emanuel (2005). Since many of the storms we consider never reach hurricane

strength, it is a stretch to think the PDI a ‘destructivness’ index; however, it is clear

that storm intensity should contain a component that is a function of wind speed and

this one is at least reasonable.

It was found that log transforms of these variables made them much more

managable in terms of statistical analysis. Transforming them led to all giving

reasonable approximations of normal distributions; thus, standard methods were readily

available.

For all three of these measures, we adopt a hierarchical modelling approach because

we are interested in whether the distribution within a year of these measures changes

through time. It is clear that the three dimensions of intensity are highly correlated

with one another. So, to model intensity first let, for year i and storm j (there are∑
j sij = si storms in year i), yij = (log(m)ij, log(track length)ij, log(PDI)ij)

′, i.e. a

vector quantity. The index k will denote the kth dimension of y (i.e. yij1 = log(m)ij

etc.). Then we suppose that

log yij ∼ MVN(µij, Λi) (10)

i.e. a multivariate normal distribution where Λi is the 3 × 3 precision matrix for each

year (but not separately for each storm). We model the mean as before

µijk = βz
0ik + βz

1ikti + βz
2ikCTIi + βz

3ikNAOIi + βz
4ikAMOi, k = 1, . . . , 3 (11)

where the superscript z denotes we are in the intensity portion of the model. We further

let

βz
rik ∼ N(πrk, φrk), r = 0, . . . , 4 (12)



14

and where these hyperparameters

πrk ∼ N(ark, brk) (13)

where we use the standard noninformative priors ark ∼ N(0, 1e − 6), brk ∼

Gamma(0.001, 0.001) and φrk ∼ Gamma(0.001, 0.001). We explored two priors for the

precision Λi. The first was the standard flat prior

Λi ∼ Wishart(I3
i , 3). (14)

where I3 is the 3 × 3 identity matrix. The second was a prior to account for the

noted increase in variance through time (see Fig. 10 below). We additionally built an

informative model of this prior, where, essentially, the variance was allowed to increase

linearly in time, and the covariances between the dimensions of intensity remained

proportionally fixed. But since there was almost no difference in the results between

these two priors, and the space needed to describe the complexity of the second is large

and would take us too far afield, we only shows results based on the first prior, eq. (14).

3. Results

All computations were carried out in the R statistical system (R Development Core

Team 2005) and the JAGS 0.97 Gibbs sampling software (Plummer 2007) on a Fedora

Core 6 platform. Models were fitted using Gibbs sampling. The first 5000 simulations

were considered “burn in” and were removed from the analysis: 50,000 additional

samples were calculated after this, with every 5th simulation used to approximate the

posterior distributions (the other 4 out of each 5 were discarded; this thins the posterior

simulations and helps remove any small amount of autocorrelation of the simulations).

Standard diagnostics (not shown) indicate that all models easily reached convergence.
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Data for all the measures we use was available from 1854, but we use only data

from 1900 onwards. The data from before this date, as is well known, is suspect enough

to cast suspicion on any results based on them. It is also not clear that a strict linear

model over the entire period of 1900-2006 would best fit these data as observation and

instrument changes through that time have changed (Elsner et al. 2004; Landsea 2007).

So we adopt the practice of computing each model over three different time periods:

once for the entire period 1900-2006; the second for dates between 1966-2006; and the

third between 1975-2006. These choices are somewhat arbitrary, but in line with the

change-point results of (Elsner et al. 2004; Jewson and Penzer 2006) and the recent

work of (Landsea 2007). Other choices are easily made, however, and we have found

that some of our results are robust to changes in these exact start times; however, this

is not always true: we emphasize where this is not below. This approach also lets us

check whether a linear model for increase/decrease of the parameters through time is

reasonable. We do not investigate more complicated models, such as linear change point

regression models, here.

a. Number of storms

The top two panels of Fig. 1 shows the time series plots of s (number of storms),

h/s (ratio of hurricane number to storm number), and c/h (ratio of category 4+ number

to hurricane number) for 1900-2006. There does appear, to the eye, to be an increase

in s in the past two decades. There do not appear to be any gross trends in h/s or

c/h. Note that for several years prior to 1920, there were no category 4+ storms or

hurricanes reported. Fig. 1.

The empirical auto-correlation estimates for each of the three time series is shown in
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Fig. 2. None of the estimates are significant, which suggests that models incorporating

lag effects are not needed; the dashed lines have to be exceeded by any individual

auto-correlation for the p-value of the test to be below 0.05; see (Brockwell and Davis

1998). Fig. 2.

Figure 3 shows the posterior distributions from the model (2). Table 1 gives the

summary statistics for this model. In each case, and in all future figures, the solid

line represents the model using all data from 1966-2006; the dashed line represents the

model using data from 1975-2006; and the dotted line represents the model using data

from 1900-2006. The posterior figures should be used to get a semi-quantitative feel for

the results; but the Table 1 should be referenced to make precise statements.

Whether or not Pr(βs
1 > 0|data) is large is sensitive to the starting point. It is clear

that there has been a linear increase since 1900 (dotted line): of course, the data up

to 1966 is certainly measured with error. Landsea (2007) presents strong evidence that

data before 1966 undercounts many tropical storm aspects. So, the same model starting

at 1966 shows, via the posterior (solid line), no evidence for an increasing linear trend.

However, that year is at somewhat of a high storm period: there were 11 storms in 1966

and up to 18 in 1969, for example. Starting at about 1973, the number of storms dips

(to 8 in 1973, 11 in 1974, and 9 in 1975). Starting the model in 1975 shows (dashed

line) good evidence for an increase. The same is true if we restarted the model at, say,

1990 (not shown): an increase is indicated. Fig. 3.

There is also strong evidence, as Elsner and Jagger found, and regardless of the

time period, that the CTI (βs
2) is important in estimating λi: greater CTIs lead to

smaller (log) λs, and therefore to a smaller probability that the mean number of storms

will be high; or more plainly, greater CTI means fewer storms. It appears that this
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realtionship has strengthened in later years (1975-2006), as the mode of the distribution

has shifted to smaller numbers, though the uncertainty in this effect has also increased

in variability (perhaps because the 1975-2006 set has a smaller sample size).

Results for the NAOI (βs
3) are weaker. The effect, if any, appears uncertain, though

it is in the same direction as CTI: that is, high a NAOI indicates fewer storms.

The AMO results are interesting. Regardless of the time period, the relationship,

as expected, is positive: higher AMO indexes are associated with more storms. The

AMO index itself starting from 1966, or 1975, shows an upwards trend, whereas it has

the opportunity to go through at least one cycle from 1900. There was some worry that

this known upward trend might have masked any trend (in these models) in the number

and conversion rate of storms (see the discussion above about trends and time series

models): however, this was not a concern because the association between AMO and

storm quality was not especially strong. The AMO effect has also appeared to weaken

since 1966.

The Table presents the same data as the figures, but only for the 1966-2006 and

1975-2006 data, in tabular form, so that readers can read a best (assuming absolute

error loss) estimate of each β at the median (50%-tile). 95% credible intervals can

also be read from the table by taking the values from the 2.5%- to the 97.5%-tiles.

The last column, Significance, gives the estimated probability that P (β > 0|data) or

P (β < 0|data) (whichever probability is larger). For β1, if there is high probability that

this number is positive, it means we have confindence that a linear increase over the

stated time period has taken place (of course, while controlling for CTI, NAOI, AMO,

and assuming the model is correct). Table 1.

The middle panel of Fig. 1 shows the ratio hi/si which does not give much indication
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of changing through time. Under this assumption, and using the well-known properties of

the posterior (6) for the data 1900-2006, we estimate that the unconditional (that is, not

controlling for CTI etc.) mean fraction of converting storms is θ̂ =
P

hi−1P
si−1

= 564
992

= 0.56,

and standard deviation of 0.01 (calculation not shown). That is, once a tropical cyclone

forms, there is a 56% chance that it will evolve into a hurricane. The results are the

same (to three decimal places) for both 1966-2006 and 1975-2006. For the rate of

conversions of category 4+ storms to hurricanes, the estimates were: 19% for 1900-2006

(however, there is large error here because of missing observations), 18% for 1966-2006,

and 21% for 1975-2006.

Applying model (8) gives Fig. 4; summarized also in Table 1. The rate at which

storms become hurricanes does not appear to change through time, given the data from

1900-2006, evidenced by the probability of βh
1 > 0 is about 1/2. And there is some

evidence, using the data from 1966-2006 or from 1975-2006, that mean rate at which

storms evolved has actually decreased.

The effect of CTI contributes negatively, though not significantly, in the sense that

when CTI increases, the chance of a cyclone becoming a hurricane decreases. The NAOI

again does not appear significant, and the direction is the same as it was for the model

of s. The AMO is not significant either, and the direction is also the same as for the

model of s. Fig. 4.

Applying model (8) gives Fig. 5; summarized again in Table 1. Given the Fig. 5.

1900-2006 data shows that there has not been a linear increase in the ratio of category

4+ storms to hurricanes, though of course the data from before 1966 is problematic.

From 1966-2006, the evidence is that there has been an increase in the rate of strong

storms evolving. But this increase would not be significant had we only considered the
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1975-2006 data.

The CTI is again important in the same way: higher CTIs are associated with

fewer hurricanes evolving into category 4+ storms. The NAOI finally appears to have

some influence: higher values are associted with a greater rate of strong storms evolving.

The AMO, except for the flawed 1900-2006 data, does not appear to be a significant

association.

The conclusion is that there is good evidence that the number of tropical cyclones

has increased, but only if you choose the right date at which to start your analysis.

Using start dates before around 1975, but after 1966, shows that there has been a

definite linear increase. But using any start date from 1966 to about 1974 shows no

increase. The rate at which hurricanes evolved from storms does not appear as sensitive

to the start date in the data: and there is some evidence that this rate has decreased

since at least 1966. The rate at which category 4+ storms evolve from hurricanes does,

like s, appear to be sensitive to start date. From 1966, there is evidence that this rate

has increased, but from 1975 the increase disappears. We say more about this in the

Conclusions.

b. Measures of intensity

Figure 6 shows the time series boxplots, from 1900, of log(m), log(track length),

and log(PDI). The boxplot gives an indication of the distribution (over storms) of

each measure within each year. There is no apparent trend in the sense that the

medians show no systematic direction (increase or decrease); the other quantiles appear

distributed around a central point. If this graphical view holds under modeling, it

means that cyclone distribution of intensity has not changed through time. Fig. 6.
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We now apply model (11) to each of these measures. Figs. 7-9 and Table 1

summarize the results.

For none of the measures, using either the 1966-2006 or 1975-2006 data sets,

does there appear to be evidence that the mean of the distribution of these measures

changed though time: the posteriors for βz
1 in each case have most of their mass around

0. Again, the posteriors for the 1900-2006 data set are very peaked and concentrated

(mostly because of the large sample size), and there is evidence that the mean of

log(track length) has increased and the mean of log(PDI) has decreased over this time

period; but whether these trends represent real physical events, or changes in the data,

it is impossible to tell. Fig. 7.

Fig. 8.

Fig. 9.

The association of CTI and intensity has appeared to strengthen over time, judging

by the left-ward shifting of the posterior modes for each successive data set, but it is

significant only for log(PDI) in the most recent years. The direction of the effect is

again negative: higher CTIs are associated with smaller mean intensities.

The NAOI is mildly associated with intensity: higher NAOIs imply smaller mean

intensities. But the association is only significant for log(track length) in the 1966-2006

time period. The AMO never became significantly associated with intensity, but the

estimated effect was in the positive direction: higher AMOs are somewhat associated

with higher mean intensities. Fig. 10.

An important finding is that the variance of intensity has increased through time:

the evidence for this is presented in Fig. 10. Here are the median estimates of the

marginal posteriors of the intensity components, Λ̂ijj
, j = 1, 2, 3, i = 1900, . . . , 2006. The

estimates from 1900-2006 are the solid time series, and the estimates from 1966-2006

are the dashed time series. In fact, the two estimates, and those from the 1975-2006
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data, are nearly identical, suggesting this effect is robust. Overplotted in each panel

is a simple linear regression line over the relevant time period. A vertical dashed line

indicates 1966. Some of the increase in variance from 1900 is certainly due to changes in

the way observations were taken, and this is also probably true for some of the increase

since 1966, but perhaps not all of it. That is, it is likely, though we cannot prove it

considering only this data in isolation, that the increase in variance of intensity is due

to natural causes.

Note, too, the large demaraction in (log) PDI, which is of course a function of wind

speed, at 1966. Although this is not a formal test of a change point, the existence of this

point gives additional weight to the finding that data before 1966 were quantitatively

different.

4. Conclusions

We find that to conclude that there has been an increase in the number of tropical

cyclones in the North Atlantic basin depends on from what date you start looking.

Looking from 1900 gives strong evidence that an increase has taken place; however, data

early from that period are certainly tainted by inadequate and missing observations, so

the confidence we have in this evidence is greatly reduced. Starting from (the years

around) 1966 does not give evidence of a linear increase, but starting from (the years

around) 1975 does. The statistical explanation for this is that the number of storms

circa 1966 were in a relatively high period, while those circa 1975 were in a relatively low

period; and, of course, circa 2005 is a relatively high period. These potential increases

are noted after controlling for the effects of CTI, NAOI, and the AMO. These differences

due to start date could be real, perhaps because of some underlying cyclicity in the data
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that coincidentally bottomed out around 1975 (after controlling for AMO etc.), or it

may just be a good lesson that it’s possible to pick and choose your starting date to

argue either way: yes, there’s been an increase, or no, there hasn’t been.

There is some evidence that the rate at which storms evolve into hurricanes has

decreased. The evidence is better using the 1966-2006 time set than that using the

1975-2006. Again, the exact starting point makes a difference to the final conclusion,

but the results here are less sensitive than are the results for s. The same conclusions

are reached for the increased rate at which hurricanes evolved into category 4+ storms:

the evidence is strong using the 1966-2006 data set, but the increase disappears when

considering only the 1975-2006 data set. The plots also show the results from 1900, and

they show no increase in either series, but we do not seriously consider this data because

of the inadequacies of the data.

This brings up the question of what start date is “the” correct start date.

Statistically, the answer is: the earliest date at which the data become consistent (and

consistency here means with respect to observational quality). There is some dispute to

this, but clearly a good case can be made for the 1966 start date.

These results are of course conditional on the model we used being adequate or at

least it being a reasonable approximation to the data. Models of the type used here have

been long-used succesfully by others (see the Introduction for sources). The data, as

such, appear consistent with our model, but they are also consistent with other models

that we did not try. For example, the trends we have identified may be part of a cycle

that has a period longer than that of our data. There is no way to know whether this is

so using just this data. We also make no predictions about future increases as it would

be foolish to extrapolate the simple linear model we used into the future.
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The effects due to CTI were not always significant, but they were always in a

negative direction. That is, lower CTIs were associated with more storms, higher rates

of conversion, and higher intensities. The NAOI was more weakly associated than the

CTI, and the direction of these effects were not always the same. It was negative for the

number of storms, the rate of hurricanes evolving from storms, and intensity, but it was

positive for the rate of category 4+ storms evolving from hurricanes. The AMO was

rarely significant, except for the number of storms using the 1966-2006 data; it may not

have been significant for the 1975-2006 data simply because the fewer data points force

less certain conclusions. Its direction was always positive as expected, however: higher

values of the AMO were associated with more storms, higher rates of conversion, and

higher intensities.

We find no evidence that the distributional mean of individual storm intensity,

measured by storm days, track length, or individual storm PDI, has changed (increased

or decreased) through time. Any increase in storm intensity at the conglomerate yearly

level, as for example found by (Emanuel 2005), is likely due to the increased number

of storms and not by the increased intensity of individual storms. We also repeated our

analysis on the distribution of each storm’s (log) maximum wind speed over its lifetime

and came to the same conclusion as with the other measures of intensity.

What has increased is the distributional variance of individual storm intensity. The

increase is seen regardless of the data source used. It is probable, though we cannot

prove it using only this data, that at least some of this increase is due to natural causes

and not because of changes in observation. These results are consistent with the results

that the rate of h/s has possibly decreased, but the rate of c/h has possibly increased.

It turns out that the per storm mean of the maximum wind speed is 73 knots (since
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1966), which is of course above the cut off for classifying a hurricane, and below that

of classifying a category 4+ storm. Now, PDI is a direct function of maximum wind

speed, and the mean of (log) PDI has stayed the same even though its variance has

increased. The same is true for maximum wind speed: it’s mean has stayed the same,

but it variance has increased. So it follows that there should be more storms with higher

maxmimum wind speed, but there should also be more storms with lower maximum

wind speed, even though the mean remains unchanged. The exact ratio of h/s and c/h

depend, of course, on how the rest of the distribution changes.

Much more exact work can be done. A model similar to that above can certainly

be used for storms across all ocean basins for which data is available, as was recently

done by Webster et al. (2005). We plan on exploring this in a future paper. Too,

more sophisticated models could be used. For example, spatial Bayesian models such as

those developed by Wikle and Anderson (2003) for estimating tornado frequency change

could be used for tropical cyclones. This is not an easy task because tornadoes, in that

model, were treated as point objects, and, of course, hurricanes vary in intensity over

vast spatial regions. The statistical characteristics of individual tropical cyclones could

be better addressed, by asking how the change in intensity (by the three measures given

above, and by others such as pressure or other of functions of wind, such as shear),

changes through storm lifetime.

In the Introduction we noted the hurricane reanalysis project of Kossin et al. (2007)

using the Dvorak technique, e.g. (Velden et al. 2006), to construct the new database.

The methods used in this paper could certainly be applied to the Kossin et al. database,

or other datasets like these. The analyses from them might make a valuable comparison

to the results presented here, though it is not clear that the state of these databases
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are such that they are ready for wide-spread use. Landsea et al. (2006), for example,

note that the Dvorak technique has not been a fool-proof correction/estimation scheme.

Also, the Kossin et al. database is estimated using a statistical regression model

whose predictions, of course, will have some uncertainty in them that can, in part, be

estimated. It will be important to be able to incorporate this uncertainty into models

like those used in this paper; though how to do so is a matter of future research.
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Figure Captions

Fig. 1. The number of storms s, the ratio h/s, and the ratio of c/h, for the North

Atlantic from 1900-2006. There are several years prior to 1920 that did not have any

reported category 4+ storms or hurricanes.

Fig. 2. The empirical auto-correlation for the number of storms s, the ratio h/s, and

the ratio of c/h, for the North Atlantic from 1966-2006. None of the series shows any

significant auto-correlation.

Fig. 3. The posterior distributions for the parameters in model (2). In each case, and

in all future figures, the solid line represents the model using all data from 1966-2006;

the dashed line represents the model using data from 1975-2006; and the dotted line

represents the model using data from 1900-2006. A vertical line at 0 is given to help

guide the eye. Posteriors with most of their mass around 0 have little to no effect on the

outcome. See the text for a discussion.

Fig. 4. As in Fig. (3) except for model (8).

Fig. 5. As in Fig. (3) except for model (8).

Fig. 6. The time series of boxplots, for each year, of log(m), log(track length), and

log(PDI). There is no apparent trend.

Fig. 7. As in Fig. (3) except for model (11) for the logged number of storm days.

Fig. 8. As in Fig. (3) except for model (11) for the logged track length.

Fig. 9. As in Fig. (3) except for model (11) for the logged PDI.
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Fig. 10. The medians of the marginal posterior distributions of the variances of log(m),

log(track), and log(PDI). The differences in estimates due to the starting date are neg-

ligible. The estimates for the 1900-2006 data are the solid time series, those from the

1966-2006 date are the dotted time series (estimates from 1975-2006 are not shown, but

are indistinguisable from the others). Simple regression lines have been over-plotted for

the relevant date ranges. It is clear that the variance of these observables has increased.
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Tables

Table 1. Common quantiles of the model parameters and the posterior probability that

these parameters are greater than 0 for 1966-2006 and 1975-2006 data only. Effects which

have 95% credible intervals entirely greater or lesser than 0 are highlighted in bold.
1966-2006 1975-2006

Parameter 2.5% 50% 97.5% Significance 2.5% 50% 97.5% Significance

s

β1 -0.01 0.00 0.02 0.76 0.00 0.02 0.03 0.97

CTI -0.30 -0.16 -0.02 0.99 -0.43 -0.25 -0.08 >0.99

NAOI -0.15 -0.02 0.11 0.61 -0.21 -0.07 0.08 0.81

AMO 0.02 0.62 1.2 0.98 -0.53 0.24 1.02 0.73

h/s

β1 -0.04 -0.02 0.00 0.97 -0.06 -0.02 0.01 0.91

CTI -0.42 -0.13 0.15 0.82 -0.64 -0.27 0.09 0.93

NAOI -0.34 -0.06 0.21 0.67 -0.47 -0.13 0.20 0.78

AMO -0.04 1.09 2.25 0.97 -1.11 0.58 2.32 0.75

c/h

β1 0.00 0.04 0.08 0.96 -0.05 0.01 0.07 0.60

CTI -1.31 -0.67 -0.07 0.99 -1.39 -0.67 0.05 0.96

NAOI -0.13 0.32 0.77 0.91 -0.05 0.47 1.00 0.96

AMO -1.92 0.26 2.47 0.59 -1.68 1.28 4.27 0.81

log(m)

β1 -0.01 0.00 0.00 0.75 -0.01 0.00 0.01 0.63

CTI -0.11 -0.03 0.05 0.75 -0.17 -0.07 0.02 0.94

NAOI -0.14 -0.07 0.01 0.96 -0.13 -0.05 0.04 0.87

AMO -0.14 0.20 0.54 0.88 -0.30 0.14 0.60 0.73

log(track)

β1 -0.01 0.00 0.00 0.82 -0.01 0.00 0.01 0.56

CTI -0.09 0.00 0.09 0.53 -0.15 -0.04 0.07 74

NAOI -0.18 -0.01 -0.02 0.99 -0.16 -0.06 0.05 0.86

AMO -0.16 0.24 0.64 0.89 -0.25 0.28 0.86 0.85

log(PDI)

β1 -0.02 -0.01 0.01 0.88 -0.02 0.00 0.02 0.53

CTI -0.29 -0.13 0.03 0.94 -0.45 -0.26 -0.07 >0.99

NAOI -0.22 -0.07 0.08 0.83 -0.21 -0.04 0.14 0.66

AMO -0.10 0.54 1.26 0.95 -0.41 0.35 1.28 0.82
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Fig. 1. The number of storms s, the ratio h/s, and the ratio of c/h, for the North

Atlantic from 1900-2006. There are several years prior to 1920 that did not have any

reported category 4+ storms or hurricanes.
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Fig. 2. The empirical auto-correlation for the number of storms s, the ratio h/s, and

the ratio of c/h, for the North Atlantic from 1966-2006. None of the series shows any

significant auto-correlation.
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Fig. 3. The posterior distributions for the parameters in model (2). In each case, and

in all future figures, the solid line represents the model using all data from 1966-2006;

the dashed line represents the model using data from 1975-2006; and the dotted line

represents the model using data from 1900-2006. A vertical line at 0 is given to help

guide the eye. Posteriors with most of their mass around 0 have little to no effect on the

outcome. See the text for a discussion.
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Fig. 7. As in Fig. (3) except for model (11) for the logged number of storm days.
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Fig. 8. As in Fig. (3) except for model (11) for the logged track length.
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Fig. 9. As in Fig. (3) except for model (11) for the logged PDI.
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Fig. 10. The medians of the marginal posterior distributions of the variances of log(m),

log(track), and log(PDI). The differences in estimates due to the starting date are neg-

ligible. The estimates for the 1900-2006 data are the solid time series, those from the

1966-2006 date are the dotted time series (estimates from 1975-2006 are not shown, but

are indistinguisable from the others). Simple regression lines have been over-plotted for

the relevant date ranges. It is clear that the variance of these observables has increased.


