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Abstract. How to assign numerical values for probabilities that dosesm artificial or arbitrary

is a central question in Bayesian statistics. The case @ajrang a probability to the truth of a
proposition or event for which there i evidence other than that the event is contingent, is
contrasted with the assignment of probability in the caseratthere iglefinteevidence that the
event can happen in a finite set of ways. The truth of a prapasif this kind is frequently assigned

a probability via arguments of ignorance, symmetry, ranaess, the Principle of Indiffernce, the
Principal Principal, non-informativeness, or by other hoels. These concepts are all shown to be
flawed or to be misleading. Ttetatistical syllogisnintroduced by Williams in 1947 is shown to fix
the problems that the other arguments have. An example icathiext of model selection is given.
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There are (at least) two central foundational problemsatisgics: how to objectively
justify probability models, and how to objectively assigmolpabilities to events and to
the parameters of probability models. The goal of both o$¢heperations is to insure
that they are not arbitrary, or are not guided by the subjectihim of the user, and
that they logically follow from the explicit evidence that given or assumed to be
known. First, it is useful to recall, what is often forgotiémat—both deductive and non-
deductive—arguments of logic are nothing more than theydbetiveerstatements, and
only between the statements explicitly defined.

So, suppos® is a premise and a conclusion to the argument fromto g: which
IS an argument that states, “(the propositign{is true) therefore (the propositiom)
(is true)" (the mathematically succinct way to write thigiss- g). Logical probability
makes statements about the truth of the conclugildre this:

0<Pr(q|p) < 1. (1)

Cox [1961], and like those in the logical probability traditibefore him [2, 3, 4, 5],
states that if the limits O or 1 apply to the conclusgpof a given argument with premiss
p, thenq is, respectively, certainly false or certainly true. Wheae liimits are reached,
then the logical connective (betwegandp) is said to bedeductivelf the limits are not
reached, then the argument frgmip q is invalid ornon-deductivendq only probable.
Recall these common definitionsontingentmeans not necessarily true or false, and
an observation statement eventis some thing that can happen (is not necessarily
false or impossible) in the given context (examples will reeg below). Inductive
arguments—which are arguments from contingent premisegwaine premises that are,
or could have been, observed, to a contingent conclusiontaooething that has not



been, and may not be able to be, observed—are, of coursealdarprobability. In an
earlier paper [6], | examine induction in statistics andgadaility.

This article surveys the most common arguments used inrasgigrobabilities to
uncertain events where the event can happen in a finite nuofo@mown) ways.
These ways are usually assigned equal probability. Thel usasons given for equi-
probable assignment are: ignorance, “no reason" or indifiee, non-informativeness,
symmetry, randomness, and some very well known matherhaigaments. All of
these arguments, by no means mutually exclusive, will beveho be flawed, or to
be misleading, or to imply the necessity of subjectivity whieis not needed. Instead,
an old argument, called the “statistical syllogism", will fleeintroduced. The statistical
syllogism avoids the problems inherent in the others, vithdadded benefit of clearly
and completely delineating the information used in a giveblgm.

IGNORANCE

To stress: logical probability concerns itself with asangnprobabilities to the conclu-
sions of arguments with explicitly stated, and fixed, presidt is easy to assign prob-
ability when the argument is deductive: the probabilitynged or 1. For an example
of a common, non-inductive (and non-deductive) argumeripsse we havedefinite
knowledge, labelled., thatM is some non-contradictory contingent statement, propo-
sition, or description of an event, amdny tautology. That is, wenowthatM is not
necessarily true or false; we also do not know, we are igripvaretherM will happen.
The argumentt A e; = M is not valid (and is readt“ande;, thereforeM is true"). The
most common tautologies used in cases like thist ard am ignorant abouiM, but |
know it can be true or false," a=“M will happen or it won't"; both of these ways of
writing t implicitly attach the definite knowledg® thatM is contingent, except that the
first mistakenly adds “I am ignorant” since \weowof M’s contingency. Now, it is true
thatt; or the statemeritis always true. A principle of logical probability gives:

0 < Pr(M (is true)|t,e:) < 1. 2)

And that is thebestwe can ever do with only the definite knowledge tlbils contingent
(e.g., Keynes [4]). This point, which has caused much cooifiss well worth reflecting
upon, and which is amplified below. It follows from the welldwn logical fact that it
Is impossible to argue validly to a contingent conclusioke(M) given a necessarily
true or tautologous premiss. This result, known since Atist is not dependent on a
particulart; any tautology or necessary truth will do.

Of course, the situation so far it ignorance, since we have already specified that
we know M is contingent. Suppose instead that somebody asked you, t“W&hhe
probability ofM?" and refused to tell you anything abddt it may be contigent, it may
be necessarily true, & may even be complete gibberish. Themprobability at allcan
be assigned. If you do assign a probability it is because y@addinginformation that
was not given to you, information you suppose that is tru¢ tiat may be false. The
argument is changed and you cannot say your assignmentad basgnorance.

Some (Bayesian) statisiticians would not like to settle ®)rWhich is a vague enough
statement abow, and would insist that we find some concrete real numliserch that



Pr(M|t,e;) = r. To find this number, there is usually an appeal, to the utesé (2),

to announce some subjective opinion they might have aldour even about how they
would take bets over the truth &. Not all Bayesians would insist that you must say
how you’d bet for or againdtl. Some try to find by an argument like the following:
“Well, M can be true, or it may be false. So it must be th&MPr= % No, it musn't.
The first sentence to this argument is jusind nothing has been gained. The step from
the conclusion ¥l is true) to the probability statement is therefore arbytr@s many
have felt before; e.g. [7]).

The argument can be modified, by inserting some additiondeace: saye, =“M
is equally like to be true or false", so that we hawe,‘therefore PiM|t) = % This
argument is dogmatic; neverthelesssitvalid; however, the premiss, is the same as
the conclusion, which isn’t wrong, but it is begging the dim@s This is usually and
loosely called a fallacy, but the conclusidoesfollow from assuming the premises are
true, therefore the argumeistvalid: it is just of no use.

People will more likely say “WellM can be true, or it may be falsand | have
no reason to think that it is false or that it is true. | am iffdient. So it must be that
Pr(M) = % This kind of argument is sometimes called the “Principiénalifference,"
advanced by Laplace and Keynes [4] and criticized in e.g {8 the “indifference" or
“no reason” clause that is the start of troubles.

NO REASON & INDIFFERENCE

The minor premiss in “Both [possibilities favl] are equally likely" is evidently itself
a conclusion from the premiss, “I have no reason to think has false or that it is
true,” or “I am indifferent abouM." Now, this argument, in its many forms, has lead a
happy life. It, or a version of it, shows up in discussion abps frequently, and also, of
course, in discussions about model selection, e.g. [9]. Bsitan argument that should
not have had the attention it did. For we can rewrite it likis:thl do not know—I am
ignorant | have no reason to know—whethigr is true or false, but it can only be true
or false (thereforeM is true)." The implicit conclusion is usually assigned @bitity
Pr(M) = 1. The argument, | hope you can see, is not valid and the priiyadiatement
Is arbitrary. Here’s why. This argumeistvalid: “M is true or it is false; therefore, | do
not know—I amignorant | have no reason to know—whethkr is true or false, but
it can only be true or false." It should now be obvious thas ttonclusion is nothing
more than a restatement of the initial tautology! To be explsaying you do not know
anything abouM, in English, means yoknow nothingand therefore cannot assign any
probability, not even the bounds of (2). But if you are sayiog ylo not know whether
it is true or false, this is the same as saying thatkoowthat it can be true or false, that
IS, youknow tA e.. So, despite our repeated insistence of “ignorance,” wé&ack to
the bounds of eq. (2), which is to say, right where we started.

This leaves “indifference”, which isn’t exactly wrong, bulbas unnecessary connota-
tions of subjectivity, and, for some, a certain implicattbat the probabilities are equal
(and so begs the question). The subjectivity is implied exdbnse that we asettingthe
probabilities by our will, or that, somehow, our opinionstteaas to what the probabil-
ities are (see Franklin [10] for a discussion of how Neymagdues similar trick applied



to interpreting classical confidence intervals).

SYMMETRY

Let M represent the fact that | see a head when next | flip this caie.y&du with the
majority who insist that the probability &l must be%? Before you answer, notice that
the ‘coin flip’ M is entirely different from any otheM’ where all you know is thall’

is contingent. For example, if instead of a coin flip, suppdsepresented the outcome
of an experiment where you to open a box and examine sometobgide and note
whether you can see an ‘H’. Now all you know is tihis contingent and can be true or
false. Basedolelyon the information you have, you do not know any other pobtés.
You do not know that an ‘H’ or some other letter or object might appeamu o not
know, even, whether a snake may jump out of the box. If you yniipht because the
guestion asked something about an ‘H’, that the result meidtdbor some other letter,
probably a ‘T’, then you araddingevidence that you weneot given.

Back to the coin flip. Why is the probability dfl %? Symmetry, perhaps? As in, “It
can fall head or tail and there is no reason to prefer—I anffer@int—to head over tail"?
But isn’t that the same as ignorance, that is, the same asut@dagy and knowledge
of contingency? It is. Because substitute ‘be true’ for ‘fadlad’ and ‘be false’ for ‘fall
tail’ and you are right back at the tautology. Or symmetryrgs‘Heads and tails are
equally likely because | have no reason to think otherwisej&i# “no reason to think
otherwise" or “Heads and tails are equally likely" or “irfdifence" are begging the
guestion or can be misleading. The anticlimatic answer $sigming probability to a
definite M is the statistical syllogism, as defined by Williams [194@i the coin flip
posed in the familiar form of a syllogistic argument (comnexample of a syllogism:
“All men are mortal, Socrates is a man, etc."):

Just 1 out of 2 of the possible sides are Heads

M is a side

M is a head (3)

This argument, is, of course, invalid in the sense that th&losion M is a head)
is not entailed by the premises. But we can assign the pratyaBil(M|es) = % that
the conclusion is true, wher is the evidence of the two premises; {mplies ;).
This probability assignment, made explicit in the form oé thtatistical syllogism, is
derivedfrom assuming uniform probability across the individuatets that make up
the “sample space": see a complete discussion in Stove [15987, who credits
Carnap [1950] with the first proof of this. In this case, thidesi of a coin, or: FH|es) =
Pr(T |es). That is to say, if you are convinced of the probability aseijimplied by the
statistical syllogism, you must admit the equi-probapitif the underlying events.
Symmetry has often been used, and objected to, as a prirtoiplesign probability,
e.g.[12, 13, 14]. Arguments based on symmetry tend to besadghg because the exam-
ples are always chosen in such a way that they are “physicalgnaced" or uniformly



symmetric, which gives rise to a certain confusion. For eplanStrevens [12] imagines
that one side is painted red on a dodecahedral die and agkotteility (in a ‘fair’ roll)

of seeing the red side. He assigns 1/12 because of (physycaihetry. Hajek [14]—and
many, many other authors, invoking something about a “‘i@géd partition"—and ar-
gue that Streven’s assignment is indeed correct under gdlysimmetry (one partition
of the outcome). But (in another partitioning) they say thai gither see the red or you
don’t, so that under this view, the probability is 1/2. Botlolpability assignments can’t
be right, so logical probability itself must be flawed! Wehge “either see red or not"
Is the tautology, which is very different information thanygical symmetry: these two
different pieces of information should certainly give diént probability assessments,
so it is to logical probability’s credit—and not its detrinte—that it does so. And we
have already seen that under the “see red or not" partitistt(j\ e:), the probability
assignment is eq. (2) and not 1/2. Also, all privileged partiarguments have a dis-
tinct subjective quality about them: why choose any pariitiot based on the statistical
syllogism unless you are intent on creating difficulties velthey do not exist?

Again, Streven’s die is physically symmetric, a very strasgumption that is not
needed. Consider this example: suppose | have-sided object, one side of which is
painted red: what'’s the probability of red? My object may—rmay not—be physically
symmetric. It may be some amorphous blob, no two sides hdakimgame surface area.
It may be physically symmetric down to the quark. But you moeentitled to say it is
physically symmetric without additional evidence. Jusegsally, you do not have any
evidence that my object is physicalgymmetric. And so, you can only appeal to the
statistical syllogism (“Just 1 side ofetc.").

WHITHER RANDOMNESS?

Suppose there are 10 men in a room and just 9 of these 10 aree8ghsM is a man in
the room. The probability that the conclusiav s a Schmenge" is true by the statistical
syllogism is%. But if you were to grab a man out of the room randomly: how canly®

sure that the probability that he is a Schmeng%BSuppose you were to “sample” the
men by opening the door and grabbing the nearest man andyvatiether or not he is
a Schmenge. Or perhaps that doesn’t sound “random” enoygluténstead, you order
the men inside to polka madly, to run about and bounce off thkésvand to not stop;
then you reach in a grab one. This sampling procedure becamadditional premise,
e ="Men are arranged in the room randomly."”

Here, | take “randomly” to mean, as it can only mean, that {lehao idea—I am
ignorant—of how the men are arranged" [17]. To show thist Stgppose thaall we
know is that there are men in a room, Imaithingelse. That is, ouonly evidence sy,
which is just another way of saying, “There are men in the roand | have no idea
who they are or how they are arranged." Tacit in this is tha itiat there may be some
Schmenges in the room, which, of course, means that thereatag any. That isg is
equivalent to, M may be true or it may be false". This is our old friend, the thagpt,
which we have already seen adds nothing to the argument thddwallow us to assign
a definite probability to the conclusion.

It should also not be necessary to say that we do not needumasanything about



infinite “trials™ of men in rooms to arrive at the probabiligf M. Some (objective)
Bayesians try this kind of argument in an attempt justify itipeiors by invoking some-
thing called thePrincipal Principle which states

that if the objective, physical probability of a random etfmthe sense of
its limiting relative-frequency in an infinite sequence éfs) were known to
ber and if no other relevant information were available, themdppropriate
subjective degree of belief that the event will occur on aaytipular trial
would also be': [8, p. 240].

Ignoring the fact that we can nev&now what happens after an infinite amount of
time, and so carknow r, or that we cannot imagine an infinite number of rooms
filled with Schmenges, but pretending that we can, the RyalcPrinciple says
“Pr(M|Pr(M) =r) = r" (it adds the premiss “®PM) = r" which is taken to be the
‘objective’ or physical probability oM), but which we can now see is just begging the
question.

MATHEMATICAL ATTEMPTS

The following arguments start with the definite knowledgthat M is contingent and
can be decomposed into a finite number of possibilities (@&m flips or rooms of
Schmenges\l1, My, ..., M, N < o,

First permutation argument (logical probability) [5]: Introduce evidencewhich
states that eithdvl; or M or etc.M,, can be true, but that only one of them can be true.
In the case wherkl is a coin flip, the result can be eithéy="head" orM,="tail". Thus,
Pr(M1V M2 V...V Mple) = 31, Pr(Mj|e). We want to assign the probabilities(F¥ |e)
fori=1...n. The set of possibilities 8] = {M1, M2, M3, ...M}. Let tbe a permutation
on the sef{1,2}. LetM’ = {My1),My2),Ms,...Mn}. That is, the seM andM’ are the
same except the first two indexes have been swappddtl.iThe evidences is fixed.
Therefore, it must be that fV;|€)m = Pr(My2)|€)m and P(Mz|e)m = Pr(My1)[€)w.
Jaynes then makes a crucial step, which is to add evideneavtuch states that the
evidence is “indifferent” taM; andMo, i.e.

if it [the evidence] says something about one, it says theesamg about
the other, and so it contains nothing that would give prsy reasorto prefer
one over the other. (p. 39, emphasis mine)

Accepting this for the momeng then says that our state of knowledge abbdut
or M’ is equivalent, including the order of the indexes. Thustdnine change in
indexes) PMi|e)m = Pr(My1)|€)w, Pr(Mzl€)m = Pr(Mp2)|€)m and Pr(Mjle)m =
Pr(Mjle)m, j = 3,...,n. Which implies P(M1/e)m = Pr(Mz|e)u: that is to say, equi-
probable prior assignment.

This argument is fine if what Jaynes says in the quotationshd@dt we can see in
it the presence of two tell-tale phrases, our old friendsdifferent” and “no reason”,
which are used, and are needed, to justify the final step.i3 hist begging the question
all over again, for how else could the eviderebe “indifferent"? That is, Jaynes has



assumed uniform probability (and thus, the statisticdbgysm) as part of the evidence
e, which is what he set out to prove.

Second permutation argument (finite exchangeability) [18]: Space does not permit
a detailed examination of this argument; details will appea future paper.

DISCUSSION

Suppose you are consideriiy andM, as the only competing models for some situa-
tion. Then, using the statistical syllogism (“JWt or M, etc.") and the logical proba-
bility assignments it implies as above (M vV Mz|es) = Pr(M1|es) + Pr(Mz|es) = 1 and
so P{Mjles) = Pr(Mz|es) = % This is the justification for starting with equal proba-
bility in model selection. Aftex is observed, then it is easy (in principle) to calculate
Pr(M1|x, es) and P({Mz|x; &s).

It is no surprise that this is the same point reached by apgetd the Principle of
Indifference, or even the Principle of Maximum Entropy fofirdte number of model
choices; Jaynes [5]. The statistical syllogism gives tmesanswers as the Principle of
Indifference, but not by the same route and, again, withleaithidden assumptions or
metaphysical baggage. The built-in question-beggingatfphinciple is gone, and there
is no appeal to subjectivity, which many find so distasteful.

In conversation, | have had it pointed out that the same tesaslthe statistical syl-
logism can be had by appealing the the Principle of Maximumfofmation) Entopy
(MAXENT), or via other complex mathematical arguments. desgwith this. However,
the additional complex apparatus of MAXENT, with its own eeaxioms and assump-
tions, is certainly not needed. The uniform probabilityussption over events that is
used to derive the statistical syllogism is just true; but &so true that the probability
assignmenshouldmaximize entropy? Maybe, but what do we mean by “should"? If
you are trying to convince somebody of the correctness at&bgrobability, it should
be clear that if you introduce MAXENT at an early stage, yaaithen asking a lot more
from your audience.

| attempted to cast light on a few common hidden assumptiotigei simplest possible
situations. This paper is certainly not a complete answrdquestion of how to assign
probabilities in an objective way in all situations. Thetistécal syllogism can clearly
be applied to assign priors on probability model parametéiesn those parameters can
take a finite number of values or states. The class of prababibdels which contain
such parameters may or may not be very large, but it is at redasgmpty, though it of
course does not contain the most frequently used probatibidels, such as those, say,
from the exponential family. | make no attempt in this pamejustify, or modify, the
use of the statistical syllogism in the case where the numbautcomes is countably or
uncountably infinte, as in the case of parameters in modealghie normal distribution.
[19] is a good starting place for these topics.

But, however simple, the statistical syllogism clearly weornd does not suffer
from the same flaws as earlier arguments—arguments whichhaaag/ given the same
answers sometimes, but come loaded with hidden assumptgssmptions which
have been barriers to acceptance of Bayesian methods. Toatdtistical syllogism
is completely objective and it eliminates any hint of “rantttess” and “chance" and the




complexity—and mysticism—that these terms imply. To thisich of this paper may
seem like quibbling. After all, the results using the statéd syllogism agree with those
(at least in these examples) that would be had appealingdaéason” etc. But this
impression of agreement is false. For one, people who waosldti for example, that all
probability calculations cannot begin before a properlffyrei®l measure space has been
carefully laid out, should not quail from a demand for thegiseness of language used in
describing such models. More importantly, the terms “nso@d etc. are all improperly
defensivand are negative. Using them with respect to assigning pifitioes naturally
creates a certain suspicion in those who hear them that korgdunny is going on.
The terms also over-emphasize, and even use when they shaulslibjectivity. With
the statistical syllogism, these problems disappear. Rer there is no subjectivity; the
probability assignment follows logically from the inforti@n given. And the statistical
syllogism emphasizes traefinite, positiveknowledge that exists (such as contingency
and know number of possible outcomes). People, | believeildvbe more inclined
to to try to understand Bayesian methods (and be made awaiee ahtltitude of
shortcomings of classical probability) if we who promoterthare more careful—and
justifiably positive—in our language.
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