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Abstract

It is past time to abandon significance testing. In

case there is any reluctance to embrace this decision,

proofs against the validity of testing to make decisions

or to identify cause are given. In their place, models

should be cast in their reality-based, predictive form.

This form can be used for model selection, observable

predictions, or for explaining outcomes. Cause is the

ultimate explanation; yet the understanding of cause

in modeling is severely lacking. All models should

undergo formal verification, where their predictions

are tested against competitors and against reality.

1 NATURE OF THE CRISIS

We create probability models either
to explain how the uncertainty in some
observable changes, or to make prob-
abilistic predictions about observations

not yet revealed; see e.g. [7, 93, 86] on
explanation versus prediction. The ob-
servations need not be in the future, but
can be in the past but as yet unknown,
at least to the modeler.

These two aspects, explanation and
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prediction, are not orthogonal; neither
does one imply the other. A model
that explains, or seems to explain well,
may not produce accurate predictions;
for one, the uncertainty in the observ-
able may be too great to allow sharp
forecasts. For a fanciful yet illuminat-
ing example, suppose God Himself has
said that the uncertainty in an observ-
able y is characterized by a truncated
normal distribution (at 0) with param-
eters 10 and 1 million. The observable
and units are centuries until the End Of
The World. We are as sure as we are of
the explanation of y—if we call knowl-
edge of parameters and the model an
explanation, an important point ampli-
fied later. Yet even with this sufficient
explanation, our prediction can only be
called highly uncertain.

Predictions can be accurate, or at
least useful, even in the absence of ex-
planation. I often use the example, dis-
cussed below, of spurious correlations:
see the website [?] for scores of these.
The yearly amount of US spending on
science, space, and technology corre-
lates 0.998 with the yearly number of
Suicides by hanging, strangulation, and
suffocation. There is no explanatory
tie between these measures, yet because
both are increasing (for whatever rea-
son), knowing the value of one would
allow reasonable predictions to be made
of the other.

We must always be clear what a
model’s goal is: explanation or pre-
diction. If it is explanation, then
while it may seem like an unnecessary
statement, it must be said that we
do not need a model to tell us what
we observed. All we have to do is
look. Measurement-error models, inci-
dentally, are not an exception; see e.g.
[21]. These models are used when what
was observed was not what was wanted;

when, for example, we are interested in
y but measure z = y + τ , with τ rep-
resenting the measurement uncertainty.
Measurement-error models are in this
sense predictive.

For ordinary problems, again we do
not need a model if our goal is to state
what occurred. If we ran an experiment
with two different advertisements and
tracked sales income, then a statement
like the following becomes certainly true
or certainly false, depending on what
happened: “Income under ad A had a
higher mean than under ad B.” That is,
it will be the case that the mean was
higher under A or B, and to tell all we
have to do is look. No model or test is
needed, nor any special expertise. We
do not have to restrict our attention to
the mean: there is no uncertainty in any
observable question that can be asked—
and answered without ambiguity or un-
certainty.

This is not what happens in ordi-
nary statistical investigations. Instead
of just looking, models are immediately
sought, usually to tell us what hap-
pened. This often leds to what I call
the Deadly Sin of Reification, where the
model becomes more real than reality.
In our example, a model would be cre-
ated on sales income conditioned on or
as a function of advertisement (and per-
haps other measures, which are not to
the point here). In frequentist statistics,
a null significance hypothesis test would
follow. A Bayesian analysis might focus
on a Bayes factor; e.g. [71].

It is here at the start of the model-
ing process the evidential crisis has as
its genesis. The trouble begins because
typically the reason for the model has
not been stated. Is the model meant to
be explanative or predictive? Different
goals lead, or should lead, to different
decisions, e.g. [78, 79, 78]. The classi-
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cal modeling process plunges ahead re-
gardless, and the result is massive over-
certainty, as will be demonstrated; see
also the discussion in Chapter 10 of [11].

The significance test or Bayes fac-
tor asks whether the advertisement had
any “effect”. This is causal language.
A cause is an explanation, and a com-
plete one if the full aspects of a cause
are known. Did advertisement A cause
the larger mean income? Those who do
testing imply this is so, if the test is
passed. For if the test is not passed, it is
said the differences in mean income were
“due to” or “caused by” chance. Leav-
ing aside for now the question whether
chance or randomness can cause any-
thing, if chance was not the cause, be-
cause the test was passed, then it is im-
plied the advertisements were the cause.
Yet if the ads were a cause, they are
of a very strange nature. For it will
surely be the case that not every obser-
vation of income under one advertise-
ment was higher than every observation
under the other, or higher in the same
exact amount. The implies inconstancy
in the cause. Or, even more likely, it
implies an improper understanding of
cause and the nature of testing, as we
shall see.

If the test is passed, cause is implied,
but then it must follow the model would
evince good predictive ability, because if
a cause truly is known, good predictions
(to whatever limits are set by nature)
follow. That many models make lousy
predictions implies testing is not reveal-
ing cause with any consistency. Recall
cause was absurd in the spurious corre-
lation example above, even though any
statistical test would be passed. Yet
useful predictions were still a possibil-
ity in the absence of a known cause.

It follows that testing conflates ex-
planation and prediction. Testing also

misunderstands the nature of cause, and
confuses exactly what explanation is. Is
the cause making changes in the observ-
able? Or in the parameter of an ad hoc
model chosen to represent uncertainty
in the observable? How can a mate-
rial cause change the size or magnitude
of an unobservable, mathematical ob-
ject like a parameter? The obvious an-
swer is that it cannot, so that our or-
dinary understanding of cause in prob-
ability models is, at best, lacking. It
follows that cause has become too easy
to ascribe cause between measures (“x”)
and observables (“y”), which is a major
philosophical failing of testing.

This is the true crisis. Tests based
on p-values, or Bayes factors, or on
any criteria revolving around parame-
ters of models not only misunderstand
cause, and mix up explanation and pre-
diction, they also produce massive over-
certainty. This is because it is believed
that when a test has been passed, the
model has been validated, or proved
true in some sense, or if not proved true,
then at least proved useful, even when
the model has faced no external valida-
tion. If a test is passed, the theories
that led to the model form in the minds
of researchers are then embraced with
vigor, and the uncertainty due these
theories dissolves. These attitudes have
led directly to the reproducibility crisis,
which is by now well documented; e.g.
[19, 22, 60, 80, 84, 3].

Model usefulness or truth is in no
way conditional on or proved by hypoth-
esis tests. Even stronger, usefulness and
truth are not coequal. A model may
be useful even if it is not known to be
true, as is well known. Now usefulness is
not a probability concept; it is a matter
of decision, and decision criteria vary.
A model that is useful for one may be
of no value to another; e.g. [42]. On
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top of its other problems, testing con-
flates decision and usefulness, assuming,
because it makes universal statements,
that decisions must have the same con-
sequences for all model users.

Testing, then, must be examined
in its role in the evidential crisis and
whether it is a favorable or unfavorable
means of providing evidence. It will be
argued that it is entirely unfavorable,
and that testing should be abandoned
in all its current forms. Its replacements
must provide an understanding of what
explanation is and restore prediction
and, most importantly, verification to
their rightful places in modeling. True
verification is almost non-existent out-
side the hard sciences and engineering,
fields where it is routinely demanded
models at least make reasonable, veri-
fied predictions. Verification is shock-
ingly lacking in all fields where proba-
bility models are the main results. We
need to create or restore to probability
and statistics the kind of reality-based
modeling that is found in those sciences
where the reality-principle reigns.

The purposes of this overview arti-
cle are therefore to briefly outline the
arguments against hypothesis testing
and parameter-based methods of anal-
ysis, present a revived view of causa-
tion (explanation) that will in its full-
ness greatly assist statistical modeling,
demonstrate predictive methods as sub-
stitutes for testing, and introduce the
vital subject of model verification, per-
haps the most crucial step. Except for
demonstrating the flaws of classical hy-
pothesis testing, which arguments are
by now conclusive, the other areas are
positively ripe with research opportuni-
ties, as will be pointed out.

2 NEVER USE HYPOTHESIS
TESTS

The American Statistical Associa-
tion has announced that, at the least,
there are difficulties with p-values,
[102]. Yet there is no official consensus
on what to do about these difficulties,
an unsurprising finding given that the
official Statement on p-values was nec-
essarily a bureaucratic exercise. This
seeming lack of consensus is why readers
may be surprised to learn that every use
of a p-value to make a statement for or
against the so-called null hypothesis is
fallacious or logically invalid. Decisions
made using p-values always reflect not
probabilistic evidence, but are pure acts
of will, as [76] originally criticized. Con-
sequently, p-values should never be used
for testing. Since it is p-values which are
used to reject or accept (“fail to reject”)
hypotheses in frequentism, because ev-
ery use of p-values is logically flawed,
it means that there is no logical justi-
fication for null hypothesis significance
testing, which ought to be abandoned.

2.1 Retire P-values Permanently

It is not just that p-values are used
incorrectly, or that their standard level
is too high, or that there are good uses
of them if one is careful. It is that
there exists no theoretical basis for their
use in making statements about null hy-
potheses. Many proofs of this are pro-
vided in [13] using several arguments
that will be unfamiliar or entirely new
to readers. Some of these are amplified
below.

Yet it is also true that sometimes
p-values seem to “work”, in the sense
that they make, or seem to make, de-
cisions which comport with common
sense. When this occurs, it is not be-
cause the p-value itself has provided a
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useful measure but because the mod-
eler himself has. This curious situation
occurs because the modeler has likely,
relying on outside knowledge, identified
at least some causes, or partial causes,
of the observable, and because in some
cases the p-value is akin to a (loose)
proxy for the predictive probabilities to
be explained below.

Now some say (e.g. [4]) that the
solution to the p-value crisis is to di-
vide the magic number, a number which
everybody knows and need not be re-
peated, by 10. “This simple step would
immediately improve the reproducibil-
ity of scientific research in many fields,”
say these authors. Others say (e.g. [45])
that taking the negative log (base 2) of
p-values would fix them. But these are
only glossy cosmetic tweaks which do
not answer the fundamental objections.

There is a large and growing body of
critiques of p-values, e.g. [5, 39, 25, 98,
77, 100, 80, 1, ?, 81, 26, 46, 47, 57, ?].
None of these authorities recommend
using p-values in any but the most cir-
cumscribed way. And several others say
not to use them at all, at any time,
which is also our recommendation; see
[69, 99, 106, 59, 11].

There isn’t space here to survey ev-
ery argument against p-values, or even
all the most important ones against
them. Readers are urged to consult the
references, and especially [13]. That ar-
ticle gives new proofs against the most
common justifications for p-values.

2.2 Proofs of P-value Invalidity

Many of the proofs against p-values’
validity are structured in the following
way: calculation of the p-value does not
begin until it is accepted or assumed the
null is true: p-values only exist when
the null is true. This is demanded by
frequentist theory. Now if we start by

accepting the null is true, logically there
is only one way to move from this posi-
tion and show the null is false. That is
if we can show that some contradiction
follows from assuming the null is true.
In other words, we need a proof by con-
tradiction by using a classic modus tol-
lens argument:

� If “null true” is true then a certain
proposition Q is true;

� ¬ Q (this proposition Q is false in
fact);

� Then “null true” is false; i.e. the
null is false.

Yet there is no proposition Q in frequen-
tist theory consistent with this kind of
proof. Indeed, under frequentist the-
ory, which must be adhered to if p-
values have any hope of justification,
the only proposition we know is true
about the p-value is that assuming the
null is true the p-value is uniformly dis-
tributed. This proposition (the unifor-
mity of p) is the only Q available. There
is no theory in frequentism that makes
any other claim on the value of p except
that it can equally be any value in (0, 1).
And, of course, every calculated p (ex-
cept in circumstances to be mentioned
presently) will be in this interval. Thus
what we actually have is:

� If “null true” then Q=“p ∼
U(0, 1)”;

� p ∈ [0, 1] (note the now-sharp
bounds).

� Therefore...what?

First notice that we cannot move from
observing p ∈ (0, 1), which is almost al-
ways true in practice, to concluding that
the null is true (or has been“failed to be
rejected”). This would be the fallacy of
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affirming the consequent. On the other
hand, in the cases where p ∈ {0, 1},
which happens in practical computation
when the sample size is small or when
the number of parameters is large, then
we have found that p is not in (0, 1),
and therefore it follows that the null is
false by modus tollens. But this is an
absurd conclusion when p = 1. For any
p ∈ (0, 1) (not-sharp bounds), it never
follows that “null true” is false. There
is thus no justification for declaring, be-
lieving, or deciding the null is true or
false, except in ridiculous scenarios (p
identical to 0 or 1).

Importantly, there is no statement in
frequentist theory that says if the null
is true, the p-value will be small, which
would contradict the proof that it is uni-
formly distributed. And there is no the-
ory which shows what values the p-value
will take if the null is false. There is thus
no Q which allows a proof by contradic-
tion. Think of it this way: we begin by
declaring “The null is true”; therefore,
it becomes almost impossible to move
from that declaration to concluding it
is false.

Other attempts at showing useful-
ness of the p-value, despite this uncor-
rectable flaw, follow along lines devel-
oped by [58], quoting John Tukey: “If,
given A =⇒ B, then the existence of
a small ε such that P (B) < ε tells us
that A is probably not true.” As Holmes
says, “This translates into an inference
which suggests that if we observe data
X, which is very unlikely if A is true
(written P (X|A) < ε), then A is not
plausible.”

Now “not plausible” is another way
to say “not likely” or “unlikely”, which
are words used to represent probability,
quantified or not. Yet in frequentist the-
ory it is forbidden to put probabilities
to fixed propositions, like that found in

judging model statement A. Models are
either true or false (a tautology), and
no probability may be affixed to them.
P-values in practice are, indeed, used
in violation of frequentist theory all the
time. Everybody takes wee p-values as
indicating evidence that A is likely true,
or is true tout court. There simply is
no other use of p-values. Every use
therefore is wrong; or, on the charita-
ble view, we might say frequentists are
really closet Bayesians. They certainly
act like Bayesians in practice.

For mathematical proof, we have
that Holmes’s statement translates to
this:

Pr (A|X & Pr(X|A) = small) = small.
(1)

I owe part of this example to Hung
Nguyen (personal communication). Let
A be the theory“There is a six-sided ob-
ject that on each activation must show
only one of the six states, just one of
which is labeled 6.” Let X = “2 6s in a
row.”We can easily calculate Pr(X|A) =
1/36 < 0.05. Nobody would reject the
“hypothesis” A based on this thin evi-
dence, yet the p-value is smaller than
the traditional threshold. And with X
= “3 6s in a row”, Pr(X|A) = 1/216 <
0.005, which is lower than the newer
threshold advocated by some. Most im-
portantly, there is no way to calculate
(1): we cannot compute the probabil-
ity of A, first because theory forbids it,
and second because there is no way to
tie the evidence of the conditions to A.
Arguments like this to justify p-values
fail.

A is the only theory under consider-
ation, so A is all we have. If we use it,
we assume it is true. It does not help to
say we have an alternate in the proposi-
tion“A or not-A”, for that proposition is
always true because is a tautology, and
it is always true regardless of whether
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A is true or false. What people seem to
have in mind, then, are more extreme
cases. Suppose X =“100 6s in a row”, so
that Pr(X|A) ≈ 1.5×10−78, a very small
probability. But here the confusion of
specifying the purpose of the model en-
ters. What was the model A’s purpose?
If it was to explain or allow calculations,
it has done that. Other models, and
there are an infinite number of them,
could better explain the observations, in
the sense that these models could better
match the old observations. Yet what
justification is there for their use? How
do we pick among them?

If our interest was to predict the fu-
ture based on these past observations,
that implies A could still be true. Ev-
erybody who has ever explained the
gambler’s fallacy knows this is true.
When does the gambler’s fallacy be-
come false and an alternate, predictive
model based on the suspicion the device
might be “rigged” become true? There
is no way to answer these questions us-
ing just the data! Our suspicion of de-
vice rigging relates to cause: we think
a different cause is in effect than if A
were true. Cause, or rather knowledge
of cause, must thus come from outside
the data (the X). This is proved for-
mally below.

The last proofs against p-value use
are not as intuitive, and also relate to
knowledge of cause. We saw in Section
1 that spending on science was highly
correlated to suicides. Many other spu-
rious correlations will come to mind.
We always and rightly reject these, even
though formal hypothesis testing (using
p-values or other criteria) say we should
accept them. What is our justification
for going against frequentist theory in
these cases? That theory never tells us
when testing should be adhered to and
when it shouldn’t, except to imply it

should always be used. Many have de-
veloped various heuristics to deal with
these cases, but none of them are valid
within frequentism. The theory says
“reject” or “accept (fail to reject)”, and
that’s it. The only hope is that, in
the so-called long run (when, as Keynes
said, “we shall all be dead”), the deci-
sions we make will be correct at theoret-
ically specified rates. The theory does
not the justify arbitrary and frequent
departures from testing that most take.
That these departures are anyway taken
signals the theory is not believed seri-
ously. And if it is not taken seriously,
it can be rejected. More about the del-
icate topic is found in [50, 52, 11].

Now regardless whether the previous
argument is accepted, it is clear we are
rejecting the spurious correlations be-
cause we rightly judge there is no causal
connection between the measures, even
though the “link” between the measures
is verified by wee p-values. Let us ex-
pand that argument. In, for example,
generalized linear models we begin mod-
eling efforts with

µ = g−1(β1x1 + · · ·+ βpxp),

where µ is a parameter in the distribu-
tion said to represent uncertainty in ob-
servable y, g is some link function, and
the xi are explanatory measures of some
sort, connected through g to µ via the
coefficients βi.

What happened to xp+1, xp+2, · · · ?
An infinity of x have been tacitly ex-
cluded without benefit of hypothesis
tests. This may seem an absurd point,
but it is anything but. We exclude in
models for observable y such measures
as “The inches of peanut butter in the
jar belonging to our third-door-down
neighbor” (assuming y is about some
unrelated subject) because we recog-
nize, as with the spurious correlations,
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that there can be no possible causal
connection between a relative stranger’s
peanut butter and an our observable of
interest.

Now these rejections mean we are
willing to forgo testing at some times.
There is nothing in frequentism to say
which times hypothesis testing should
be rejected and which times it must be
used, except, as mentioned, to suggest
it always must be used. Two people
looking at similar models may there-
fore come to different conclusions: one
claiming a test is necessary to verify his
hypothesis, the other rejecting the hy-
pothesis out of hand. Then it is also
true many would keep an xj in a model
even if the p-value associated with it is
large if there is outside knowledge this
xj is causally related in some way to the
observable. Another inconsistency.

So not only do we have proof that all
use of p-values are nothing except ex-
pressions of will, we have that the test-
ing process itself is rejected or accepted
at will. There is thus no theoretical jus-
tification for hypothesis testing—in its
classical form.

There are many other arguments
against p-values that will be more fa-
miliar to readers, such as how increas-
ing sample size lowers p-values, and that
p-value “significance” is no way related
to real-world significance, and so on for
a very long time, but these are so well
known we do not repeat them, and they
are anyway available in the references.

There is however one special, or
rather frequent, case in economics and
econometrics, where it seems testing is
not only demanded, but necessary, and
that is in so-called tests of stationarity.
A discussion of this problem is held in
abeyance until after cause has been re-
viewed, because it impossible to think
about stationarity without understand-

ing cause. The answer can be given
here, though: testing is not needed.

We now move to the replacement for
hypothesis tests, where we turn the sub-
jectivity found in p-values to our bene-
fit.

3 MODEL SELECTION USING
PREDICTIVE STATISTICS

The shift away from formal testing,
and parameter-based inference, is called
for in for example [44]. We echo those
arguments and present an outline of
what is called the reality-based or pre-
dictive approach. We present here only
the barest bones of predictive, reality-
based statistics. See the following refer-
ences for details about predictive prob-
abilities: [24, 37, 38, 61, 62, 66, 14, 12].
The main benefits of this approach are
that it is theoretically justified wholly
within probability theory, and therefore
has no arbitrariness to it, that it un-
like hypothesis testing puts questions
and answers in terms of observables,
and that it better accords with the true
uncertainty inherent in modeling. Hy-
pothesis testing exaggerates certainty
through p-values, as discussed above.

Since the predictive approach won’t
be as familiar as hypothesis testing, we
spend a bit more time up front before
moving to how to apply it to complex
models.

3.1 Predictive Probability Mod-
els

All probability models fit into the
following schema:

Pr(y ∈ s|M), (2)

where y in the observable of interest
(the dimension will be assumed by the
context), s a subset of interest, so that
“y ∈ s” forms a verifiable proposition.
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We can, at least theoretically, measures
its truth or falsity. That is, with s
specified, once y is observed this propo-
sition will either be true or false; the
probability it is true is predicated on
M, which can be thought of as a com-
plex proposition. M will contain every
piece of evidence considered probative
to y ∈ s. This evidence includes all
those premises which are only tacit or
implicit or which are logically implied
by accepted premises in M. Say M in-
sists uncertainty in y follows a normal
distribution. The normal distribution
with parameters µ and σ in this schema
is written

Pr(y ∈ s|normal(µ, σ))

=
1

2

[
erf

(
s2 − µ
σ
√

2

)
− erf

(
s1 − µ
σ
√

2

)]
,

(3)

where s2 is the supremum and s1 the in-
fimum of s when s ∈ R, and assuming
s is continuous. In real decisions, s can
of course be any set, continuous or not,
relevant to the decision maker. M is the
implicit proposition “Uncertainty in y is
characterized by a normal distribution
with the following parameters.”Also im-
plicit in M are the assumptions lead-
ing to the numerical approximation to
(3) because of course the error function
is not analytic (erf(x) = 2√

π

´ x
0
e−t

2
dt).

Since these approximations vary, the
probability of y ∈ s will also vary, essen-
tially creating new or different M for ev-
ery different approximation. This is not
a bug, but a feature. It is also a warn-
ing that it would be better to explicitly
list all premises and assumptions that
go into M so that ambiguity can be re-
moved.

It must be understood that each cal-
culation of Pr(y ∈ s|Mi) for every dif-
ferent Mi is correct and true (barring
human error). The index is arbitrary

and ranges over all M under consid-
eration. It might be that a proposi-
tion in a particular Mj is itself known
to be false, where it is known to be
false conditioned on premises not in
Mj: if this knowledge were in Mj it
would contradict itself. But this out-
side knowledge does not make Pr(y ∈
s|Mj) itself false or wrong. That prob-
ability is still correct assuming Mj is
correct. For instance, consider M1 =
“There are 2 black and 1 red balls in
this bag and nothing else and one must
be drawn out”, Pr(black drawn|M1) =
2/3, and this probability is true and
correct even if it is discovered later
that there are 2 and not 1 red
balls (= M2). All our discovery
means is that Pr(black drawn|M1) 6=
Pr(black drawn|M2). This simple ex-
ample should be enough to clear up
most controversies over prior and model
selection, as explained below.

It is worth mentioning that (3) holds
no matter what value of y is observed.
This is because, unless as the case may
be s ≡ R or s ≡ ∅,

Pr(y ∈ s|normal(µ, σ))

6= Pr(y ∈ s|y, normal(µ, σ)).

The probability of y ∈ s conditioned on
observing the value of y will be extreme
(either 0 or 1), whereas the probabil-
ity of y ∈ s not conditioning on know-
ing the value will not be extreme (i.e.
in (0, 1)). We must always keep careful
track of what is on the right side of the
conditioning bar |.

It is usually the case that values
for parameters, such as in (3), are not
known. They may be given or esti-
mated by some outside method, and
these methods of estimation are usu-
ally driven by conditioning on observa-
tions. In some cases, parameter values
are deduced; e.g. such as knowledge
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that µ in (3) must be 0 in some engi-
neering example. Whatever is the case,
each change in estimate, observation,
or deduction results in a new M. Com-
parisons between probabilities is thus
always a comparison between models.
Which model is best can be answered
by appeal to the model only in those
cases where the model itself has been
deduced by premises which are either
true themselves, or are accepted as true
by those interested in the problem at
hand. These models are rare enough,
but they do exist; see [11] (Chapter 8)
for examples. In other cases, because
most models are ad hoc, appeal to which
model is best must come via exterior
methods, such as by the validation pro-
cess, as demonstrated below.

In general, models are ad hoc, be-
ing used for the sake of convenience or
because of custom. Consider the nor-
mal model used above. If the parame-
ters are unknown, guesses may be made,
labeled µ̂ and σ̂. It is in general true
then that Pr(y ∈ s|normal(µ, σ)) 6=
Pr(y ∈ s|normal(µ̂, σ̂)), with the equal-
ity occurring (for any s) only when µ =
µ̂ and σ = σ̂. Thus we might say
M1 = normal (µ, σ) (where the values
may be known or supplied) and M2 =
normal (µ̂, σ̂) (where guesses are used).
Again, the guesses are usually driven by
methods applied to observations. Max-
imum likelihood estimation is common
enough. So that it would be better to
write

M2 = normal (MLE(µ̂, σ̂,Dn)),

where Dn indicates the n previous ob-
servations of y (the data). Method of
moments is another technique, so that
we might write

M3 = normal (MOM(µ̂, σ̂,Dn)),

And in general Pr(y ∈ s|M2) 6= Pr(y ∈
s|M3). Both of these probabilities (for

any s) are correct. Whether or not one
is better or more useful than another
we have yet to answer. Importantly, we
then have, for example,

M4 = normal (MLE(µ̂, σ̂,Dn+m)),

where M2 is identical to M4 except for
the addition (or even subtraction) of m
observations. Again, in general, Pr(y ∈
s|M2) 6= Pr(y ∈ s|M4). However, it is
usually accepted that adding more ob-
servations provides better estimates, so
that it follows M4 is superior to M2.
However, it might not be that M4 is
more useful than M2. Usefulness is not a
probability or statistical concept: truth
is, and we have already proven the prob-
abilities supplied by all these instances
are correct. About usefulness, more
presently.

The predictive model selection pro-
cess begins in this example like this:

Pr(y ∈ s|M4(Dn+m)) = p+ δ, (4)

Pr(y ∈ s|M2(Dn)) = p (5)

Following [64], we say the additional ob-
servations m are relevant if δ 6= 0, and
irrelevant if δ = 0. There are obvi-
ous restrictions on the value of δ, i.e.
δ ∈ [−1, 1] (the bounds may or may
not be sharp depending on the prob-
lem). If adding new observations does
not change the probability of y ∈ s,
then adding these points has provided
no additional usefulness. Relevance, as
is clear, depends on s as well as M.
Adding new observations may be rele-
vant for some s (say, in the tails) but
not for others (say, near the median);
i.e. δ = δ(s). As the s of interest them-
selves depend on the decisions made by
the user of the probability model, rel-
evance cannot be totally a probability
concept, but must contains aspects of
decision. The form (4) would be useful
in developing sample size calculations,
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which are anticipated to be similar to
Bayesian sample size methods, e.g. [70].
This is an open area of research.

The size of the critical value δ is also
decision dependent. No universal value
exists, or should exist, as with p-values.
The critical value may not be constant
but can depend on s; e.g. large relative
changes in rarely encountered y may not
be judged important. Individual prob-
lems must “reset” the value of δ(s) each
time.

As useful as the form (4) will be to
planning experiments, it is of more in-
terest to use it with traditional model
selection. Here then is a more general
form:

Pr(y ∈ s|M1) = p+ δ, (6)

Pr(y ∈ s|M2) = p. (7)

This is, of course, identical in form to
(4), which shows the generality of the
predictive method. M1 may be any
model that is not logically deducible
from M2; if M2 is deducible from M1,
then δ ≡ 0. What’s perhaps not obvi-
ous is that (6) can be used both before
and after data is taken: before data, it
is akin to (4); after, we have genuine
predictive probabilities.

A Bayesian approach is assumed
here, though a predictive approach un-
der frequentism can also be attempted
(but not recommended). We have the
schematic equation

Pr(y ∈ s|Mθ)

=

ˆ
Θ

Pr(y ∈ s|θMθ) Pr(θ|Mθ)dθ. (8)

Here M is a parameterized probabil-
ity model, possibly containing observa-
tions; and of course it also contains all
(tacit, explicit and implicit) premises
used to justify the model. If (8) is calcu-
lated before taking data, then Pr(θ|Mθ)

is the prior distribution and Pr(y ∈
s|θMθ) the likelihood. In this case, (8)
is the prior predictive distribution (al-
lowing s to vary, of course). If the cal-
culations are performed after data has
been taken, Mθ is taken to represent the
model plus data, and thus Pr(θ|Mθ) be-
comes the posterior, and (8) becomes
the posterior predictive distribution.

All models have a posterior predic-
tive form, though most models are not
“pushed through” to this final form. See
[6] for derivation of predictive posteriors
for a number of common models, com-
puted with so-called reference priors.
Now here it worth saying that (8) with
an Mθ which assumes as part of its list of
premises a certain prior is not the same
as another posterior predictive distri-
bution with the same model form but
with a different prior. Some are trou-
bled by this. They should not be. Since
all probability is conditional on the as-
sumptions made, changing the assump-
tions changes the probability. Again,
this is not a bug, but a feature. After
all, if we change the (almost always) ad
hoc model form we also change the prob-
ability, and this is never bothersome.
We have already seen that adding new
data points also changes the probabil-
ity, and nobody ever balks at that, ei-
ther. It follows below that everything
said about comparing models with re-
spect to measures xi applies to compar-
ing models with different priors.

The immediate and obvious ben-
efit of (8) is that direct, verifiable,
reality-based probabilistic predictions
are made. Since y is observable, we
have a complete mechanism in place for
model specification and model verifica-
tion, as we shall soon see.

It is more usual to write (8) in a form
which indicates both past data and po-
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tentially helpful measures x. Thus

Pr(y ∈ s|XDnMθ) =ˆ
Θ

Pr(y ∈ s|θXDnMθ) Pr(θ|XDnMθ)dθ,

(9)

where X = (x1, x2, · · · , xp) represents
new or assumed values of measures x,
and Dn = (yn,Xn) are the previous n
observations (again, the dimension of y
etc. will be obvious in context). Usu-
ally or by assumption Pr(θ|XDnMθ) =
Pr(θ|DnMθ).

For model selection, which assumes,
but need not, the same prior and obser-
vations, but which must choose between
x, we finally have

Pr(y ∈ s|XDnM1) = p+ δ, (10)

Pr(y ∈ s|XDnM2) = p. (11)

Everything said above about δ applies
here, too. Briefly, addition of subtrac-
tion of any number of x from one model
to the other will move δ away from 0.
The distance it moves is a measure of
importance of the change, but only with
respect to a decision made by the user
of the model. At some s, a |δ| > 0.01
may be crucial to one decision maker
but useless to a second, who may require
in his application a |δ| > 0.20 before
acting. This assumes the same models
and same observations for both decision
makers—and same s. The predictive
approach has thus removed a fundamen-
tal flaw of hypothesis testing, which set
one number for significance for all prob-
lems and decisions everywhere. There
was no simple way in hypothesis test-
ing to use a p-value in decisions with
different costs and losses; yet predic-
tive probability is suited for just this
purpose. And since these are predic-
tive probabilities, the full uncertainty of
the model and data are accounted for,

which fixes a second fundamental prob-
lem of hypothesis tests, which revolved
around unobservable parameters. Re-
call that we can be as certain as possible
of parameter values but still wholly un-
certain in the value of the observable.
This point is almost nowhere appreci-
ated, but it becomes glaringly obvious
when data is analyzed.

3.2 Comparing other Model Se-
lection Measures

Now (10) shares certain similarities
with Bayes factors. These may be writ-
ten in this context as

BF =
Pr(Dn|M1,E)

Pr(Dn|M2,E)

=
Pr(M1|Dn,E)

Pr(M2|Dn,E)

Pr(M2|E)

Pr(M1|E)
. (12)

This form implies there must be out-
side or extra-model evidence E from
which we could assess Pr(M1|E) and
Pr(M2|E). If E suggests these are the
two and the only two models under con-
sideration, then it follows Pr(M1|E) =
1−Pr(M2|E). It is difficult to see what
this E might be, except for the sim-
ple case where the obvious deduction
Pr(M1|E) = Pr(M1|E) = 1/2 is made.
But then that would seem to hold for
any two models, regardless the number
of changes made between models; i.e.
we make the same deduction whether
one parameter changes between models
or whether there are p > 1 changes.
Of course, such problem-dependent E
might very well exist, and in practice
they always do, as the infinity of hy-
potheses example above proved. In
those cases where it is explicit it should
be used if the decision is to pick one
model over another.

The BF also violates the predictive
nature of the problem. It asks us to
choose a model as the once and final
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model, which is certainly a sometime
goal, but the measure here is not pre-
dictive in terms of the observable. If
our interest is predictive, and with any
finite n, there will still be positive prob-
ability for either model being true. We
need not choose in these cases, but can
form a probability weighted average of
y ∈ s assuming both models might be
true. This is another area insufficiently
investigated: why throw away a model
that may be true when what one really
wants are good predictions?

We can in any case see that the
BF exaggerates differences as hypoth-
esis tests did, though not in the same
manner. For one, the explicit setting of
s is removed in the BF, whereas in the
predictive δ = δ(s) it is assumed any
model may be judged useful for some
s and not for others. The BF sort of
performs an average over all s. A large
(or small) BF value may be seen, but
because we’re comparing ratios of prob-
abilities the measure is susceptible to
swings in the denominator toward 0. Of
course, the predictive (10) can be writ-
ten in ratio form, i.e. p+δ

p
, and this may

in some cases be helpful in showing how
predictive measures are related to Bayes
factors and other information criteria,
such as the Bayesian Information Cri-
terion, AIC, minimum message length,
and so on. All these are open research
questions. However, only the predictive
method puts the results in a form that
are directly usable and requires no ad-
ditional interpretation by model users.
This latter benefit is enormous. How
much easier is to to say to a decision
maker, “Given our model and data, the
probability for y ∈ s is p” than to say
“Given our data and that we accept our
model is false, then we expect to see val-
ues of this ad hoc statistic p × 100% of

the time, if we can repeat the experi-
ment that generated our data an infi-
nite number of times”? The question
answers itself.

How to pick the s? They should al-
ways be related to the decisions to be
made, and so s will vary for different
decision makers. However, it should be
the case that for some common prob-
lems natural s arise. This too is an open
area of research.

3.3 Example

Here is a small example, chosen
for its ease in understanding. The
Boston Housing dataset is comprised of
506 observations of Census tract me-
dian house prices (in $1,000s), along
with 13 potential explanatory measures,
the most interesting of which is nox,
the atmospheric nitric oxides concentra-
tion (parts per 10 million), [54]. The
idea was that high nox concentrations
would be associated with lower prices,
where “associated” was used as a causal
word. To keep the example simple
yet informative, we only use some of
the measures: crim, per capita crime
rate by town; chas, Charles River bor-
der indicator; rm, average number of
rooms per dwelling; age, proportion
of owner-occupied units built prior to
1940; dis, weighted distances to five
Boston employment centres; tax, full-
value property-tax rate; and b, a func-
tion of the proportion of blacks by town.
The dataset is available in the R pack-
age mlbench. All examples in this paper
use R version 3.4.4, and the Bayesian
computation package rstanarm version
2.17.4 with default priors.a.

The original authors used regression
of price on the given measures. The or-
dinary ANOVA table is given in Table
1.

a Code for all examples is available at http://wmbriggs.com/post/26313/
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Table 1 The ANOVA table for the linear regression of median house prices (in
$1,000s) on a group of explanatory measures. All variables would pass ordinary
hypothesis tests.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.035298 4.193677 -2.631 0.00877

crim -0.110783 0.036748 -3.015 0.00270

chas1 4.043991 1.010563 4.002 7.25e-05

nox -11.068707 4.145901 -2.670 0.00784

rm 7.484931 0.381730 19.608 < 2e-16

age -0.068859 0.014473 -4.758 2.57e-06

dis -1.146715 0.207274 -5.532 5.12e-08

tax -0.006627 0.002289 -2.895 0.00395

b 0.012806 0.003142 4.076 5.33e-05

The posterior distribution of the pa-
rameters of the regression mimic the
evidence in the ANOVA table. These
aren’t shown because the interest is not
on parameters, but observables. Most
researchers would be thrilled by the ar-
ray of wee p-values, figuring the model
must be on to something. We shall see
this hope is not realized.

What does the predictive analysis
show? That’s a complicated ques-
tion because there is no single, univer-
sal answer like there is in hypothesis-
testing, parameter-centric modeling.
This makes the method more burden-
some to implement, but since the pre-
dictive method can answer any question
about observables put to it, it’s gener-
ality and potential are enormous.

We cannot begin without asking
questions about observables. This is
implicit in the classical regression, too,
only the questions there have nothing
directly to do with observables, and so
nobody really cares about them. Here
is a question which I thought interest-
ing. It may be of no interest to any
other decision maker, all of whom may
ask different questions and come to dif-
ferent judgments of the model.

The third quartile observed hous-
ing price was $35,000. What is the
predicted probability prices would be
higher than that given different levels
of nox for data not yet observed? The
answer for old data can be had by just
looking. In order to answer that, we
also have to specify values for crim,
chas, and all the other measures we
chose to put into the model. I picked
median observed values for all. The
stan_glm method was used to form a re-
gression of the same mathematical form
as the classic procedure, and the poste-
rior_predict method from that pack-
age was used to form posterior predic-
tive distributions, i.e. eq. (9). These
are solved using resampling methods;
for ease of use and explanation the de-
fault values on all methods were used.

Fig. 1 shows the relevance plot for
the models with and without nox. This
is the predictive probability of hous-
ing prices greater than $35,000 with all
measures are set at their median value,
and with nox varying from its minimum
to maximum observed values. The lines
are not smooth because they are the
result of a resampling process; larger
resamples would produce smoother fig-
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Fig. 1 Relevance plot, or the predictive probability of housing prices greater than
$35,000, using models with nox (black line) and without (blue). All other measures are
set at their median value.

ures; however, these are adequate for
our purposes.

The predictive probability of high
housing prices goes from about 4% with
the lowest levels of nox, to something
near 0% at the maximum nox values.
The predictive probability in the model
without nox is about 1.8% on aver-
age. The original p-value for nox was
0.008, which all would take as evidence
of strong effect. Yet for this question
the probability changes are quite small.
Are these differences (a ± 2% swing)
in probability enough to make a differ-
ence to a decision maker? There is no
single answer to that question. It de-
pends on the decision maker. And there
would still not be an answer until it was
certain the other measures were making
a difference. Now experience with the
predictive method shows that often a
measure will be predictively useful, but
which also gives a large p-value; but we
also see cases where the measure shows
a wee p-value but does not provide any
real use in predictive situations. Every
measure has to be checked (and this is

easily automated). We don’t do this
here because it would take us too far
afield.

What might not be clear but needs
to be is that we can make predictions for
any combination of X, for any function
of Y. Usefulness of X (any of its con-
stituent parts) is decided with respect to
these functions of Y, which in turn are
demanded by the decisions to be made.
Usefulness is in-sample usefulness, with
the real test of any model being verifi-
cation, which is discussed below. An-
ticipating that, we have a most useful
plot, which is the probability prediction
of Y for every old observed X, suppos-
ing that old X were new. This is shown
in Fig 2.

Price (s) in on the x-axis, and the
probability of future prices less than
s, given the old data and M, are on
the y-axis. A dotted red line at $0 is
shown. Now we know based on exter-
nal knowledge to M that it is impos-
sible prices can be less than $0. Yet
the model far too often gives positive
probabilities for impossible prices. The
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Fig. 2 The probability prediction of housing prices for every old observed X,
supposing that old X were new. The vertical red dashed line indicates prices we know
to be impossible based on knowledge exterior to M.

worst prediction is about a 65% chance
for prices less than $0. I call this phe-
nomenon probability leakage, [9]. Natu-
rally, once this is recognized, M should
be amended. Yet it never would be rec-
ognized using hypothesis testing or pa-
rameter estimation: the flaw is only re-
vealed in the predictive form. An or-
dinary regression is inadequate here. I
do not here pursue other models, which
are here not the point. What should
be fascinating is the conjecture that
many, many models in economics, if
they were looked at in their predictive
sense, would show leakage, and when
they do it is another proof the ordi-
nary ways of examining model perfor-
mance generate over-certainty. For as
exciting as the wee p-values were in the
ANOVA table above, the excitement
was lessened when we looked for practi-
cal differences in knowledge of nox. And
that excitement turned to disappoint-
ment when it was learned the model had
too much leakage to be useful in a wide
variety of situations.

We have only sketched the many

opportunities in predictive methods re-
search. How the predictive choices fit in
with more traditional informational cri-
teria, such as given in [65], is largely un-
known. It seems clear the predictive ap-
proach avoids classic “paradoxes”, how-
ever, such as for instance given in [67],
since the focus in prediction is always
on observables and their probabilities.

It should also be clear that nox, use-
ful of not, could not cause a change in
housing prices. In order to be a cause,
nox would somehow have to seep into
realtors’ offices and push list prices up
or down. This is not a joke, but a neces-
sary condition for nox being an efficient
cause. Another possibility is that buy-
ers’ or sellers’ perception of nox caused
them to raise or lower prices. This
might happen, but it’s scarcely likely:
how many home owners can even iden-
tify what nox is? So it might be that
nox causes other things that, in turn or
eventually, cause prices to change. Or it
could be that nox has nothing to do with
the cause of price changes, and that its
association with price is a coincidence or
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the result or “confounders.” There is no
way to tell by just examining the data.
This judgment is strict, and is proven in
the next Section.

4 Y CAUSE?

This section is inherently and neces-
sarily more philosophical than the oth-
ers. It addresses a topic scientists, the
closer their work gets to statistics, are
more accustomed to treating cavalierly
and, it will be seen, sloppily. As such,
some of the material will be entirely new
to readers. The subject matter is vast,
crucial, and difficult. Even though this
is the longest section, it contains only
the barest introduction, with highlights
of the biggest abuses in causal ascrip-
tion common in modeling. One of the
purposes of models we admitted was ex-
planation, and cause is an explanation.
There are only two possibilities of cause
in any model: cause of change in the
observable y or cause of change in the
unobservable, non-material parameters
in the model used to characterize uncer-
tainty in y. So that when we speak of
explanation, we always speak of cause.
Cause is the explanation of any observ-
able, either directly or through a param-
eter. Since models speak of cause, or
purport to, we need to understand ex-
actly where knowledge of cause arises:
in the data itself through the model, or
in our minds. We must understand just
what cause means, and we must know
how, when, and if we really can identify
cause. It will be seen that, once again,
classic data analysis procedures lead to
over-certainty.

4.1 Be Cause

There is great confusion about the
role cause and knowledge of cause plays
in statistical and econometric models,

e.g. [43, 97], which are all species
of probability models. I include in
this designation all artificial intelligence
and so-called machine learning algo-
rithms whose outputs while they may
be point predictions are not meant
to be taken literally or with absolute
certainty, implying uncertainty is war-
ranted in their predictions; hence they
are non-standard forms of probability
models. We may say all such al-
gorithms, from the statistical to the
purely computational, are uncertainty
models. Any model which produces
anything but certain and known-to-be-
certain predictions is an uncertainty
model in the sense that probability,
quantified or not, must be used to grasp
the output.

Can probability or uncertainty mod-
els discover cause? Always or never,
or only under certain circumstances?
What does cause mean? These are all
large topics, impossible to cover com-
pletely in a small review article. So here
we have the limited goal of exploring the
confusing and varying nature of cause
in probability models in common use,
and in contrasting modern, Humean,
Popperian, and Descartean notions of
cause with the older but resurgent Aris-
totelian ideas of cause that, it will
be argued, should be embraced by re-
searchers for the many benefits it con-
tains.

For good or bad, and mostly a whole
lot of bad, causal language is often used
to convey results of probability mod-
els; see [49]. Results which are merely
probable are far too often taken as cer-
tain. [36] relates a history of attempts
at assigning cause in linear models, be-
ginning with Yule in 1899. These at-
tempts have largely been similar: they
begin by specifying a parameterized lin-
ear model. One or more of the pa-
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rameters are then taken to be effects of
causes. Parameter estimates are often
called “effect size”, though the causes
thought to generate these effects are
not well specified. Models are often
written in causal-like form (to be de-
scribed below), or cause is conceived by
drawing figurative lines or “paths” be-
tween certain parameters. The conclu-
sion cause exists or does not exist de-
pends on the signs of these parameters’
estimates. [83] has a well known book
which purports to design strategies at
automatically identifying causes. [27]
investigate design of experiments which
are said to lead to causal identification.
It will be argued below that these are
vain hopes, as algorithms cannot under-
stand cause.

What’s hidden in these works is the
tacit assumption, shared by frequen-
tist, Bayesian, and computer modeling
efforts, that cause and effect can al-
ways be quantified, or quantified with
at enough precision to allow cause to
be gleaned from models. This un-
proved and really quite astonishingly
bold assumption doubtless flows the no-
tion that to be scientific means to be
measurable; see [28]. It does not fol-
low, however, that everything can be
measured. And indeed, since Heisen-
berg and Bell, [92], we have known that
some things, such as the causes for cer-
tain quantum mechanical events, can-
not be measured, even though some of
the effects might and are. We therefore
know of cases where knowledge of cause
is impossible. Let us see whether these
cases multiply.

Now cause is a philosophical, or
metaphysical concept. Many scientists
tend to view philosophy with a skepti-
cal eye; see e.g. [94]. But even saying
one has no philosophy is a philosophy,
and the understanding of cause or even

the meaning of any probability requires
a philosophy, so it is well to study what
philosophers have said on the subject of
cause, and see how that relates to prob-
ability models.

The philosophy we adopt here is
probabilistic realism, which flows from
the position of moderate realism; see
[82, 32]. It is the belief that the real
world exists and is, in part, knowable;
it is the belief that material things exist
and have form, and that form can exist
in things or in minds (real triangles ex-
ist, and we know the form of triangle in
the absence of real triangles). In math-
ematics, this is called the Aristotelian
Realist philosophy, see [35] for a recent
work. This is in contrast to the more
common Platonic realism, which holds
numbers and the like exist as forms in
some untouchable realm, and nominal-
ism, which holds no forms exists, only
opinion does; see [89] for a history. The
moderate realist position is another rea-
son we call the approach in this pa-
per reality-based probability. Probabil-
ity does not exist as a thing, as a Pla-
tonist would hold, but as an idea in the
mind. Probability is thus purely episte-
mological. This is not proved here, but
[11] is an essential reference.

What is cause? [56] opens his arti-
cle on probabilistic causation by quoting
Hume’s An Enquiry Concerning Human
Understanding: “We may define a cause
to be an object, followed by another,
and where all the objects similar to the
first, are followed by objects similar to
the second.” This seemingly straight-
forward theory—for it is a theory—led
Hume through the words followed by
another ultimately to skepticism, and
to his declaration that cause and event
were “loose and separate”. Since many
follow Hume, our knowledge of cause is
often said to be suspect. Cause and ef-
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fect are seen as loose and separate be-
cause that followed by cut the link of
cause from effect. The skepticism about
cause in turn led to skepticism about
induction, which is wholly unfortunate
since our surest knowledge, such as that
about mathematical axioms, can only
come from inductive kinds of reason-
ings; there are at least five kinds of in-
duction. The book by [48] is an essen-
tial reference. Skepticism about induc-
tion led, via a circuitous route through
Popper and the logical positivists, to
hypothesis testing, and all it associated
difficulties; see the histories in [20, 8].
However, telling that story would take
us too far afield; interested readers can
consult [11] (Chapter 4), [95, 104] about
induction, and Briggs (Chapter 5) and
[13] about induction and its relations to
hypothesis testing.

In spite of all this skepticism, which
pervades many modern philosophical
accounts of causation and induction,
scientists retained notions of cause (and
induction). After all, if science was not
about discovering cause, what was it
about? Yet if scientists retained con-
fidence in cause, they also embraced
Hume’s separation, which led to curious
interpretations of cause. Falsification,
a notion of Popper’s, even though it is
largely discredited in philosophical cir-
cles ([94, 96]), is still warmly embraced
by scientists, even to the extent that
models that are said not to be falsifiable
are not scientific.

It’s easy to see why falsification is
not especially useful, however. If for
example a model on a single numeri-
cal observable says, as many probabil-
ity models do say, an observable can
take any value on the real line with
a non-zero probability, no matter how
small that probability (think of a nor-
mal model), then the model may never

be falsified on any observation. Falsi-
fication can only occur where a model
says, or it is implied, that a certain
observable is impossible—not just un-
likely, but impossible—and we subse-
quently see that observable. Yet even
in physical models when this happens
in practice, which is rare, the actual
falsification is still not necessarily ac-
cepted because the model’s predictions
are accompanied by a certain amount of
“fuzz” around its predictions, [23]; that
is, the predictions are not believed to be
perfectly certain. With falsification, as
with testing, many confuse probability
with decision.

Another tacit premise in modern
philosophies is that cause is limited to
efficient causality: described loosely as
that which makes things happen. This
limitation followed from the rejection of
classical, Aristotelian notions of cause,
which partitioned cause into four parts:
(1) the formal or form of a thing, (2)
the material or stuff which is causing
or being affected, (3) efficient cause,
and (4) final cause, the reason for the
cause, sometimes called the cause of
(the other) causes. See [31] for a gen-
eral overview. For example, consider an
ashtry: the formal cause is the shape
of the ashtray, the material cause is the
glass comprising it, the efficient cause
the manufacturing process used to cre-
ate it, and the final cause the purpose,
which is to hold ashes. The reader
would benefit from thinking how the
fullness of cause explains observables of
interest to him.

Final causation is teleological, and
teleology is looked on askance by many
scientists and philosophers; biologists in
particular are skittish about the con-
cept, perhaps fearing where embracing
teleology might lead; e.g. [68]. What-
ever its difficulties in biology, teleology
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is nevertheless a crucial element in as-
sessing causes of willed actions, which
are by definition directed, and which
of course include all economic actions,
e.g. [105]. Far from being rarefied, all
these distinctions are of the utmost im-
portance, because we have to know just
which part of a cause is associated with
what parameter in a probability model,
as discussed momentarily. This is an
area of huge research opportunity. For
instance, is the parameter representing
the efficient cause, or the material? Or
the formal or final. Because cause is
believed in modern research to be one
thing, over-certainty again arises.

The modern notion of cause, as
stated above, is that a cause, a power
of some kind, acts, and then at some
future point an effect occurs. The
distance in time of this separation of
cause and effect is never exactly speci-
fied, which should raise a suspicion that
something from the description is miss-
ing. It has led to the confusion that
time series (in the formal mathemati-
cal sense) might be causal. In any case,
it is acknowledged that efficient causes
operate on material things which pos-
sess something like a form, though the
form of the material thing is also al-
lowed to be indistinct, meaning that
it is accepted that the efficient cause
may change the form of a thing, which
still nevertheless still remains the same
thing, at least in its constituent parts.
The inconsistency is that the form of the
thing describes its nature; when a form
is lost or changed to a new form, the old
form is gone.

Contrast this confusing description
with the classical definition of substan-
tial form; essential references are [34, 82,
32]. Substances, i.e. things, are com-
posed of material plus form. A piece
of glass can take the form of a win-

dow or an ashtray. Substances, which
are actual, also have or possess poten-
tiality; to be here rather than there,
to be this color rather than that, to
not exist, and so forth. Potentiality is
thus part of reality. Potentiality be-
comes actuality when the substance is
caused to change. The principle of
(efficient) causality (accepted by most
philosophers) states that the reduction
of potency to actuality requires some-
thing actual. A change in potentiality
to actuality is either in essence, when
something comes to be or passes out of
existence, or in accident, when some-
thing about a thing changes, such as po-
sition or in some other observable com-
ponent, but where the substance retains
its essence (a piece of glass moved is still
a piece of glass, unless it is broken or
melted, then its essence has changed).
A probability model quantifies poten-
tiality in this sense. This is an active
area of research in quantum mechanics
and probability; see [63, 90].

Cause is ontological: it changes a
thing’s being or accidents, which are de-
fined as those properties a substance has
which are not crucial for its essence, i.e.
what it is. A red house painted white is
still a house. It is everywhere assumed
the principle of sufficient reason holds,
which states that every thing that ex-
ists has a reason or explanation for its
existence. In other words, events do not
happen for “no reason”; the idea that
things happen for “no reason” is, after
all, an extremely strong claim. Now
we can be assured that there are suffi-
cient reason for a thing’s existence, but
this in no way is an assertion that any-
body can know what those reasons al-
ways are. And indeed we cannot always
know a thing’s cause, as in quantum me-
chanics.

Knowledge of cause is epistemolog-
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ical. As with anything else, knowl-
edge can be complete, of truth or fal-
sity, or incomplete, and of a probabilis-
tic nature. If cause is purely efficient,
then uncertainty of cause is only of effi-
cient causes; indeed, as we’ll see below
this is the way most models are inter-
preted. There is an unfortunate ambi-
guity in English with the verb to deter-
mine, which can mean to cause or to
provide sufficient reason. This must be
kept in mind if cause is multifaceted, be-
cause a model make speak of any of four
causes.

4.2 Cause in Models

Using a slightly different notation
than above, most probability models
follow the schema y ∼ f(x, θ,M), where
y is the observable of interest, and M
the premises or evidence used to im-
ply the form of f , i.e. the model.
The function f is typically a probabil-
ity distribution, usually continuous, i.e.
y ∈ R. Continuity of the observable is
an assumption, which is of course im-
possible to verify, because no method
of measurement exists that could ever
verify whether y is actually infinitely
graduated (in whatever number of di-
mensions): all possible measurements
we can make are discrete and finite in
scope. This may seem like a small point,
but since we are interested in the cause
of y, we have to consider what kind of
cause can itself be infinitely graduated,
which must be the case if y can take
infinitely many values—where the size
of the infinity has yet to be discovered.
Is y ∈ N or is y ∈ R or is y in some
higher infinity still? It should make us
gasp to think of how a cause can op-
erate on the infinite integers, let alone
the “real” numbers, where measure the-
ory usually stops. But if we think we
can identify cause on R, why not believe

we can identify it on sets with cardi-
nality larger than ℵ1 (the cardinality of
R)? These are mind-boggling questions,
but it is now perhaps clear the differ-
ence between potentiality and actuality
is crucial. We can have a potentially
infinite number of states of an observ-
able, but only a finite number of actual
states. Or we can have a potentially in-
finite number of observables, but only a
finite number of actual observables: if
any observable was infinite in actuality,
that’s all we would see out of our win-
dows. Needless to say, how cause fits
in with standard measure theory is an
open area of research.

The model f (given by M) of the
uncertainty of y is also typically con-
ditioned on other measures x, which
are usually the real point of investiga-
tion. These measures x are again them-
selves also usually related with param-
eters θ, themselves also thought con-
tinuous. As said, there are a host of
assumptions, many usually implicit, or
implicit and forgotten, in M, which are
those premises which justify the model
and explain its terms. This is so even if,
as if far from unusual, M is the excuse
for an ad hoc model. Most models in
actual use are ad hoc, meaning the they
were deduced from first principles.

The stock example of a statistical
model is regression, though what is
said below applies to any parameter-
ized model with (what are called) co-
variates or variables. Regression begins
in assuming the uncertainty in the ob-
servable y is characterized by a parame-
terized distribution, usually the normal,
though this is expanded in generalized
linear regression. The first parameter µ
of the normal is then assumed to follow
this equation:

µ ∼ θ0 + θ1x1 + θ2x2 + · · ·+ θpxp. (13)
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The description of the uncertainty in
this form is careful to distinguish
the probabilistic nature of the model.
Equation (13) says nothing about the
causes of y. It is entirely a representa-
tion of how a parameter representing a
model of the uncertainty in y changes
with respect to changes in certain other
measures, which may or may not have
anything to do with the causes of y. The
model is correlational, not causal. The
parameters are there as mathematical
“helpers”, and are not thought to exist
physically. They are merely weights for
the uncertainty. And they can be got rid
of, so to speak, in fully correlational pre-
dictive models; i.e. where the parame-
ters are integrated out. For example,
Bayesian posterior predictive distribu-
tions; see above and [6]. In these cases,
as above, we (should) directly calculate

Pr(y ∈ s|XDnM) (14)

We remind the reader that M contains
all premises which led to the form (13),
including whatever information is given
on the priors of the parameters and so
forth. Again, no causation is implied,
there are no parameters left, and every-
thing, for scientific models, is measur-
able. Equation (14) shows only how the
(conditional on D and M) probability
of y ∈ s changes as each xi does. Of
course, the equation will still give an-
swers even if no xi has any causal con-
nection to y in any way. Any x inserted
in (14) will give an answer for the (con-
ditional) probability of y ∈ s, even when
the connection between any x and y is
entirely spurious. The hope in the case
of spurious xi is that the xi will show
low or no correlation with y and that

Pr(y ∈ s|XDnM) ≈ Pr(y ∈ s|X−iDnM) ∀s
(15)

Indeed, if the equality is strict, then xi
is said to be as above, using the wording

on [64], irrelevant for the understanding
of the uncertainty of y. If the equal-
ity is violated, xi is relevant. Relevance
does not imply importance or that a
cause between x and y has been demon-
strated.

Another way of writing regression,
which is mathematically equivalent but
philosophically different, is this:

y = θ0+θ1x1+θ2x2+· · ·+θpxp+ε. (16)

This form is taken as directly or vaguely
causal, depending on the temperament
of the reader. This is a model of y it-
self and not the uncertainty of y as in
(13). The last term ε is said, by some,
to be normal (or some other distribu-
tion). Now to be is, or can be, an on-
tological claim. In order for ε to onto-
logically be normal, probability has to
be real, a tangible thing, like mass or
electron charge is. The ε is sometimes
called an “error term”, as if y could be
predicted perfectly if it were not for the
introduction of this somewhat mysteri-
ous “exogenous” cause or causes. The xi
are interior to the model, meaning they
pertain to y in some, usually undefined,
causal way.

The indirect causal language used
for models in this form is vague in prac-
tice. This form of the model says that
the xi are causes of y in combination
with the θi, which may be moderators
of causes or the effects of causes due
to the x. What part of cause—formal,
material, efficient, final—is never said,
though efficient causation is frequently
implied. Often the θi are called effect
sizes, which is causal language, mean-
ing that unit increases in xi cause y to
change by θi, which is the measurable ef-
fect. But if this is true, then this cause
must always operate in just the same
way, unless blocked. More on this im-
plications of this in a moment.
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Many physics or deterministic mod-
els are written in a way similar to (16),
but in those cases cause is better under-
stood. In probability models, the ε is as-
sumed to be filled with causes, though
small ones, like flea bites. The causes
xi are linear in effect, or near enough
so, with negligible forces outside linear-
ity; if there are such forces they are de-
posited into ε or into functions of the xi.
The error term is causal but in such a
way the effects are constrained not to be
linear individually, but of a certain dis-
tributional shape. Causes outside this
shape may exist, as might causes out-
side the xi, but they are not captured
by the model. Perfect predictability is
rarely claimed, which is an admission all
causes have not been identified.

Now all this is very confusing; worse,
the amorphic causal language is bol-
stered when null hypothesis significance
testing is used to decide which xi “be-
long” to (16) and which do not. A so-
called null hypothesis says typically that
some θj = 0, which is taken as mean-
ing that xj is not causal, which is an
odd way to put it, as if θj itself is the
true cause. The “alternate hypothesis”
is that θj 6= 0, which is everywhere
taken as meaning xj is causal, or that
it is something like a cause, such as a
“link”. When a p-value associated with
θj is greater than the magic number, xj
is sometimes thought not to be a cause;
it is dismissed as if it has been proven
not to be cause, or that it might be a
cause but of great weakness. But then
sometimes xj, even with a large p-value
is still believed to be a cause though
that there was not yet enough evidence
to “prove” xj was a cause—or a “link”.

Link is nowhere defined in the lit-
erature. It may be that xj is a direct
cause or some indirect cause; it is never
quite specified, nor is the part of cause

identified. It may be that a third, or a
fourth, or some number down the chain,
measure changes in response to y, which
in turn back up the chain causes xj to
change. Now whatever the true cause
is, it either happens to y or it happens
to µ. But a cause can only happen to a
parameter if that parameter materially
exists. There does not exist, as far as
I can discover, any explanation of how
any causal power may change the value
of a parameter: by what mechanism?
Instead, it appears to be believed that
observables y themselves have distribu-
tions. We see this in language that y are
“drawn” from distributions, which must
therefore exist in some Platonic realm
(e.g. “y is normal”). Frequentists are,
of course, committed to believing this,
though most have not thought out the
implications of this assertion; again, see
[51, 52] for criticisms. Finally, if observ-
ables really do have distributions in an
ontological sense, then it must be that
causes operating on observables really
do cause changes in their immaterial
parameters—which always then must
exist as real things in subsequences of
sequences going to the limit (the def-
inition of frequentism). Frequentism
is Platonism. Even if any of this is
true, it should at least be clear to the
reader that all is not well thought out.
The alternative is to forgo frequentism
and move to more logically consistent
theories of probability where cause is
constrained to observables and tangible
measures; i.e. a theory that is reality-
based.

Regression is the paradigmatic pa-
rameterized probability model. There
are other kinds of models, though,
which are not parameterized but which
are still discussed as if they are causal
but yet have probabilistic interpreta-
tions. Neural nets and the like fall
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into this class of probability model.
Classification and regression trees, ran-
dom forests and other various so-called
machine learning algorithms do, too;
;see [7]. Without getting into too
much detail, artificial intelligence and
generic machine learning models pro-
duce strings of decision rules like this:

If (x12 < a and b ≤ x7 < c) or (x25

= Yellow ...) then y ∈ s. (17)

These pronouncements can and usually
are made probabilistic by grouping rules
and permutations of rules together, such
that when the algorithm is given a set of
x, it produces a probability of y ∈ s (or
something which is treated like a prob-
ability). Since these algorithms work
with actual observations, they usually
maintain a discrete and finite stance.
This is in their favor since no ad hoc
assumptions about formal probability
models are made. When any formal
probability is overlaid upon them, they
can be treated like other parameterized
probability models.

Various indirect measures of impor-
tance for each xi are made in these
models, such as examining how accu-
racy (defined relative to in-sample pre-
dictions of y) increases or decreases if
xi if removed from the model. If a par-
ticular xj is never or rarely selected in
a rule, it is thought not to be causal,
or of low causal power; otherwise it is
seen in the same senses as with regres-
sion above. The ascription of cause is
as with parameterized models: the lan-
guage is vague and claims of cause are
shifting.

The hope of these non-
parameterized models, especially of hu-
man behavior or biology, is that if only
enough different xi are collected y can
be predicted with certainty or with
near-certainty. Even if it is acknowl-

edged that this ultimate-data-collection
hope will not be realized in practice, it
still exists as a hope. When it does, it
is a tacit acknowledgement the models
are thought causal, at least partially.
This hope also assumes all causes are
measurable, and therefore are mate-
rial. These are very strong claims. In
physics, this hope is known to be false,
as said. Perhaps a Bell-like theorem of
the unknowability of cause in human
behavior will be somebody be found.

This is very important for economics
since all measures and observables are
caused ultimately by human behavior,
so it is worth emphasizing. For some
physical processes in quantum mechan-
ics, it is well known that perfect, i.e.
certain, prediction is impossible. Mea-
sures xi cannot be found that will bring
certainty. This is why, besides Bell’s
proofs, Heseinberg’s Uncertainty Prin-
ciple has such an apt name. Free will,
or free choice, which of course is implicit
in all observables about human behav-
ior, is also not predictable in an analo-
gous way. Some who use a computer-
as-brain metaphor believe that all hu-
man behavior is in principle determinis-
tic, i.e. it has distinct material causes,
and that free will is an “illusion” (it
is never stated who is having the illu-
sion). But these expressions are hope-
ful only, because no causal mechanism
is known that can cause a being to be-
lieve it is conscious and has experiences
of choice. Indeed, some philosophers be-
lieve human intellect and will to be non-
material ([33]), and therefore that which
is causing changes in will cannot be
measured (effects of will can, however,
be measured). Others argue against
the computer-as-brain metaphor, e.g.
[75]. These counter-arguments (to the
hope that all life is strictly determinis-
tic) collectively can be taken, at least
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in a metaphorical sense, as the start of
a Bell-like theorem that cause of will
cannot with certainty be known. This
means models which take any account of
human behavior, which includes all eco-
nomic and financial observables, must
in the end remain in the correlational
realm with regard to behavior.

4.3 When Cause is not a Cause

It cannot be denied that cause can
be known, and that some causal x can
be put into uncertainty models. Indeed,
when this happens, which it does es-
pecially in those models which are fre-
quently tested against reality, it is dis-
covered testing (and p-values) “verifies”
these causes. Yet they were known, or
suspected, before testing. And indeed
must have been, as we shall see. How
cause is known is discussed presently.
We must first understand cause is not
simple. We remind the reader of a sim-
ple example. Consider an experiment
which measures exposure or not to some
dread thing and whether or not peo-
ple developed some malady. Hypothesis
testing might “link” the exposure to the
disease; and, indeed, everybody would
act as if they believed the exposure has
caused the malady. But the exact op-
posite can be true.

It will almost surely be the case that
not everybody in the exposed group will
have developed the malady; and it will
also be that some people in the not-
exposed group will also have the mal-
ady. It thus cannot be that the people
in not-exposed group had their disease
caused by the exposure, for of course
they were not exposed. It then necessar-
ily follows that their malady was caused
by something other than the exposure.
This, then, is definitive proof that at
least one more cause than the supposed
cause of the exposure exists. There is

no uncertainty in this judgment.
We still do not know if the exposure

was a cause. It could be that every per-
son in the exposed group had their dis-
ease caused by whatever caused the dis-
ease in the not-exposed group—or there
could even be other causes that did not
affect anybody in the not-exposed group
but that, somehow, caused disease in
the exposed group. It could be that ex-
posure caused some disease, but there is
no way to tell, without outside assump-
tions, how many more maladies (besides
the known other cause(s)) were caused
by the exposure.

It’s worse still for those who hold
uncertainty models can discover cause.
For how do we explain those people in
either group who did not develop the
disease? Even if exposure causes disease
sometimes, and the other (unknown-
but-not-exposure) cause which we know
exists only causes disease sometimes, we
still do not know why the exposure or
non-exposure causes disease only some-
times. Why did these people develop
the malady and these not? We don’t
know. We can “link” various correla-
tions as“cause blockers”or“mitigators”,
but we’re right back where we started
from. We don’t know, from the data
alone, what is a cause and what is not,
and what blocks these (at least) two
causes sometimes but not in others.

Cause therefore, like probability, is
known conditionally. In our most rig-
orous attempts at discovering cause, we
design an experiment to demonstrate a
causal connection or effect: x is believed
to cause a change in y. Every known or
believed cause or moderator of y or of x
is controlled, to the best of the exper-
imenter’s ability. Then x is deployed
or varied and the change in y is mea-
sured as precisely as possible. If after
x changes we see y change, or we see a
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change of a certain magnitude and the
like, we say x is indeed a cause of y (in
some form).

But this judgment supposes we have
correctly identified every possible cause
or moderator of y or of x. Since in sci-
ence we deal with the contingent, y will
be contingent. This means that even in
spite of our certainty that x is a or is the
cause of y, there always exists the possi-
bility (however remote) that something
unknown was responsible for the obser-
vations, or that blocked or prevented
x from using its powers to change y;
[29, 87, 88]. This possibility is theoret-
ical, not necessarily practical. In prac-
tice we always limit the number of pos-
sible causes x to a finite set. If we design
an experiment to deduce if x = “grav-
ity” caused the y = “pencil to drop”, we
naturally assume, given our background
knowledge about gravity and its effects
on things like pencils, that the pencil
will drop because of gravity. Yet if the
pencil does drop, it remains a theoreti-
cal possibility that something else, per-
haps a mysterious pencil-pulling ray ac-
tivated by pranksters, caused the pencil
drop and not gravity. There is no way
to prove this is not so. Yet we implic-
itly (and rightly!) condition our judg-
ment on the non-existence of this ray
and on any other freakish cause. It is
that (proper) conditioning which is key
to our understanding of cause.

This discussion might seem irrele-
vant, but it is not. It in fact contains
the seed of the proof that algorithms
automated to discover cause of observ-
ables must contain in advance at least
the true cause of y. And so it must
be that cause, or rather knowledge of
cause, is something that can only be had
in the mind. No algorithm can deter-
mine what was a cause or was not, un-
less that algorithm was first“told”which

are causes and which not. This is proved
shortly. The point of this exercise is to
exhort researchers from preaching with
too much vigor and too much certainty
about their results, especially in those
instances where a researcher claims a
model has backed up his claims. All
models only do what they were told;
that a model fits data is not indepen-
dent verification of the model’s truth.

A true cause x of y, given identical
conditions and where identical is used
in its strictest sense, will always lead
to perfect correlations (not necessarily
linear, of course) of an observable. An
algorithm can certainly note this per-
fect correlation, and it can be “told” to
say things like“If a perfect correlation is
seen at least so-many times, a cause ex-
ists.”But perfect correlations are not al-
ways indicative of cause. Samples, even
though thought large, can be small, and
the correlation spurious. The direction
of causality can be backwards, where
it’s not x causing y, but y causing x.
Third, and of even greater importance,
removed measures might be causing the
observations: e.g. w is causing v and
z which are in turn causing y and x,
which is all we measure. These kinds of
remote-cause scenarios multiply. In the
last, if w is not measured, or v or z are
not, then the algorithm has no way to
identify cause. If they are measured and
in the algorithm, it must be because the
cause was already suspected or known.

4.4 Cause is in the Mind, not the
Data

Suppose you fed into the algorithm
a series of numbers, starting at 1, then
2, and so on. The machine discovers the
rule that for any three of these numbers
x, y, and z “If x = y and y = z, then
x = z. ” The rule is true for all the
numbers fed into the algorithm. But is
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it always true, i.e. true for numbers not
yet fed into the algorithm? The algo-
rithm cannot tell us—unless, again, it
were pre-programmed to announce that
after so-many examples the universal is
true. By“universal”we mean the propo-
sition holds for an infinity of natural
numbers. This example is, of course
the second of Peano’s axioms for math-
ematics, believed by all (who consider
it) to be true. But that is because hu-
mans have the ability to extract this
universal from data, whereas an algo-
rithm cannot. In this case, no algorithm
can ever consider an infinity of numbers;
whereas, we can. Consider that the
universal is not necessarily true in this
case, because the algorithm may have
been fed numbers from some process
which after a point sees the sequence
become intransitive, at which point the
rule breaks down. The algorithm can-
not know what is beyond what it sees.
The difference from the universal and
the eventually intransitive sequence is
conditioning. When we judge the ax-
iom true, we condition on the idea it
applies to numbers not tied to any pro-
cess, except their progression. But the
algorithm cannot know this; it cannot
know anything. This is why it can be
fooled if fed limited sequences. People
can be fooled, too, of course, but a per-
son and not an algorithm would under-
stand whether the input was part of a
contingent process or was purposely the
sequence of natural numbers.

Now that is an obscure and philo-
sophical answer to the question whether
algorithms can discover causes. It is
also contra to some who argue algo-
rithms can indeed mimic human think-
ing; perhaps not now, but eventually;
see [83]. So here is simple proof that
cause is in the mind and not the data.
A silly thought experiment: Pick some-

thing that happened. It doesn’t mat-
ter what it is, as long as it happened.
Something caused this thing to happen;
which is to say, something actual turned
the potential (of the thing to happen)
to actuality. All four facets of cause
were involved, of course. I will take,
as my example, the death of Napoleon.
One afternoon he was spry, sipping his
Grand cru, and planning his momentous
second comeback, and the next morning
he was smelling like week-old Brie.

Next we want to design an algorithm
to discover the cause of this thing (in all
four aspects of cause, or even just the ef-
ficient cause). This can be a regression,
machine learning routine, neural net,
deep learning algorithm, artificial intel-
ligence routine, anything you like. Plug
into this algorithm, or into a diagram
in the computer, or into whatever de-
vice you like, THE EVENT. Then press
“GO” or “ACTIVATE” or whatever it is
that launches the algorithm into action.
What will be the result?

Nothing, of course. This lifeless al-
gorithm cannot discover cause, because
it has left out “data”. There is nothing
for the algorithm to process: no data to
work on. There are no “x” to tie to the
“y”, i.e. the event. So which data should
we put in? We have to choose. There
are an infinite number of measures (x)
available, and any machine we design
will have finite capacity. We must do
some kind of winnowing to select only
certain of these infinite x. Which? How
about these (keep in mind my event):
(x1) The other day I was given a small
bottle of gin in the shape of a Dutch
house in delft blue. (x2) You weren’t
supposed to drink the gin, but I did.
(x3) In my defense, I wasn’t told until
after I drank it that I shouldn’t have.
(x4) It wasn’t that good.

Now if these x seem absurd to you,
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you have proven that cause is in the
mind and not the data, that it is you
who are extracting cause from data and
not algorithms. For you have used
your knowledge of cause to discern there
could not be any possible connection be-
tween a novelty bottle of gin and the
death of a tyrant two centuries previ-
ously. We can’t let an algorithm figure
out the cause if we do not first feed the
algorithm x which we believe or suspect
are in the causal path of y, and tell it
which measure of relation between an x
and y is appropriate to use in judgment
and whether this measure has crossed
the admitted threshold. And even this
does solve the full causal path problem,
where other measures may be causing
the x and y.

Again, there are an infinite number
of measures x. Everything that’s ever
happened, in the order it happened, is
data. That’s a lot of data. How can any
algorithm pick cause out of all that to
tell us the cause of any event? That tall
order is thus not only tall, but impos-
sible, too, since everything that’s ever
happened wasn’t, for the most part,
measured. And even it if it was, no de-
vice could store all this data or manip-
ulate it.

We could argue that only data re-
lated to y in some way should be in-
put into the algorithm, perhaps the rela-
tions discovered by previous algorithms.
But related must mean those measures
which are the cause of the event, or
which are not the direct causes, but in-
cidental ones, perhaps measures caused
by the event itself, or measures that
caused the cause of the event, and that
sort of thing. Those measures which
are in (we can call it) the causal path.
Any previous algorithm used to winnow
x down to a suitable subset of related
items must itself have been told which x

of the infinite choices to start with. And
so on for any algorithms “upstream” of
ours. There thus must come a point
where human intelligence, which has the
ability to extract universals like cause
from data, albeit imperfectly, comes
into play and does the choosing. Algo-
rithms are thus only good for automat-
ing the tedious tasks of computation.

The best any algorithm can do is to
find prominent correlations, which may
or may not be directly related to the
cause itself (and some may be spurious),
using whatever rules of “correlation” we
pre-specify. These correlations will be
better or worse depending on our un-
derstanding of the cause and therefore
of what “data” we feed our algorithm.
The only way we know these data are
related to the cause, or are the cause,
is because we have a power algorithms
can never have, which is the extraction
of and understanding of universals. To
wrap up: cause is hard, and we’re better
off claiming nothing more than correla-
tion in most instances.

4.5 Tests of Stationarity and
Cause

The notion of stationarity is ubiqui-
tous in time series modeling, e.g. [18].
There is often great concern that a
given series is not stationary, a con-
cern which has given rise to a suite
of tests, like the unit-root or Dickey
Fuller, e.g. [30]. We need not explore
the mathematical details. The idea is
that the probability model for a non-
stationary series for observable yt has
parameters, such as those representing
covariance, that change in time, and
that if this is so, ordinary methods of
estimation will fail when making state-
ments about other parameters, such as
those for auto-regression. This is true
mathematically, but not causally.
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Now all yt in a series are caused: it
cannot be, in ordinary time series mod-
els, that any yt−j for any j and t caused
yt, in any efficient sense. For instance,
last year’s GDP did not cause this year’s
GDP to take the value it did. They
may share common causes, of course,
and they also may not. Since proba-
bility is not ontic, i.e. does not exist
materially, it cannot be the series itself
that is not stationary, but the causes un-
derlying it are not constant. Cause can
change in all the ways indicated above:
by form, material, efficient power, or fi-
nal. We have simple proof that at least
one cause changed or a new one inter-
vened whenever yt 6= yt−1. So when a
series is said not to be stationary, it only
means that the causes of the observable
have changed enough so that the distri-
bution representing uncertainty in the
observable’s variables must be changed
at a point or points.

Explanation is, as we saw, a model
goal, and knowledge of cause is the best
explanation, and this is so in time series
as in any other data. There are thus
two goals in time series modeling: to
say when a thing like a “change point”
(change in the nature of causes) oc-
curred, and prediction. Both goals are
predictive.

If we seek to say when a change
point happened, then we must posit a
model of change, which we treat predic-
tively like any other model. It will is-
sue predictions Pr(Change at t|DnY) =
pt, t = 0, 1, . . . , T (we don’t need the X
here). To pick which t was the culprit
requires having a decision rule, just as
we must have a decision rule to move
from probability to point in any model.

Yet often we don’t care when the
change was, because our interest is in
prediction. In that case, we don’t
have to pick which t was the change

point, and we simply make predictions
of yt+k, k > 0 weighted (in the suit-
able and obvious way) by every possible
change point t. The change point is in-
tegrated out like any parameter. In any
case, testing is not needed.

4.6 The End of Cause

There is much more to this discus-
sion (see [11]), but I have taxed the
reader too much already, with much of
the discussion seemingly arcane. The
hope is that if the reader does not see
the arguments above as definitive proof,
then he see there is at least good evi-
dence that our traditional means of as-
cribing cause are at the very least too
certain, if not often in downright error.

Consider, lastly, a typical (but fic-
tional) news headline, drawn from a
scientific statistical study: “New Study
Reveals Those Who Read At Least Five
Books A Year Make More Money.” The
implication is, of course, that reading
(at least five but not four books) causes
higher incomes. News outlets will have
none of the caveats we presume the con-
scientious researchers will put into their
paper; the media (and many govern-
ment agencies) will assume cause has
been definitively proven. It is the fault
of researchers everywhere for not cor-
recting these exceedingly common over-
statements.

Yet even if researchers admit to lim-
itations, they will make the same mis-
takes as the press. We are in the
same situation of the exposure and not-
exposure example causing disease. Even
if it is true that reading at least five
(and not four or three) books causes
higher incomes, it won’t always do so,
yet in the Discussion section of their
paper the researchers will have surely
launched into great theories of how the
reading caused the higher incomes, im-
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plying the cause happened to all readers
and with the same force. Even if the dif-
ferences between (what are called) read-
ers and non-readers is small, success will
be claimed, when it is far from clear
the direction of the cause is consistent,
whether a third cause intervened, and
whether the claimed cause is even real
or reproducible.

Consider this more mundane head-
line that might be generated by the
reality-based, predictive method using
the same data: “There Is A 6% Chance
Those Who Read At Least Five Books
A Year Will Make At Least $400 More
Annually, But Only If The Following
Conditions Hold.” This is both predic-
tive (6%), and verifiable ($400+, the fol-
lowing conditions). Yet that kind of an-
nouncement, were it a university press
release, while being vastly more honest,
is not the sort of information that will
get a researcher’s (or the university’s)
name into the paper.

5 TRUST BUT VERIFY

However many models are left in
consideration at the end of the model-
ing process, unless those models were
deduced from first principles (see [11]
Chapter 8 for examples), there will
or should be uncertainty whether the
model or models are of any use in real-
ity. A tremendous weakness of hypothe-
sis testing is that it certified, if you like,
a model’s goodness by requiring only
that it evince at least one wee p-value.
This is an absurd situation when we re-
call both how easy it is to produce wee
p-values, and that the vast majority of
models in use are ad hoc; regression be-
ing the largest example.

5.1 The Intrusion of Reality

Scarcely any who use statistical
models ever ask does the model work?
Not works in the sense that data can be
fit to it, but works in the sense that it
can make useful predictions of reality of
observations never before seen or used
in any way. Does the model verify? Ver-
ification is a strict test, a test models in
physics, chemistry, meteorology, and all
engineering fields must pass to be con-
sidered as viable. In those fields, mod-
els are not just proposed, but they are
proposed and tested. Would you strap
yourself into brand new a flying car built
on speculative theoretical principles but
was never tested in any way, except for
how good the model looked on a com-
puter?

Some fields never verify their mod-
els. They are content with hypothesis
testing and the many opportunities for
theorizing (some might say “pontificat-
ing”) that method provides. There is
thus no real way to know how good the
models in these areas really are. Over-
confidence must be the rule, however,
else we would not have the replication
crisis mentioned above.

Verification in economic data is not
uncommon in time series models. Time
series models are set in a naturally pre-
dictive form, where predictions are (or
should be) a matter of course. Many
formal verification methods have ac-
cordingly came from this research; e.g.
[2]. Another fecund field is (readers
might be surprised to learn) meteorol-
ogy. Weather and climate forecasts ap-
pear with regularity and the demand for
accuracy is keen. Great strides in math-
ematical verification methods have ac-
cordingly arisen in these areas; see [103].

The process of verification in its
ideal form is simplicity itself: (1) cre-
ate using old observations the model or
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models, (2) make probabilistic predic-
tions using them, (3) wait for new ob-
servations to accrue, (4) and then score
those models with respect to the deci-
sions that were made using the predic-
tions. This is exactly how you would
assess driving a new flying car.

Scientists, economists, and other re-
searchers are often impatient about step
(3). New observations typically have
not arrived by the time papers must
be published, and, as everybody knows
with absolute certainty, it really is pub-
lish or perish. Ideally, researchers
would wait until they have accumulated
enough new, never-before-used-in-any-
way observations so that they could
prove their proposed models have skill
or are useful. The rejoinder to this is
that requiring actual verification would
slow research down. But this is a fal-
lacy, because it assumes what it seeks
to prove; namely, that the new research
is worthy. The solution, which ought
to please those in need of publications,
is two-fold: use verification methods to
estimate model goodness using the old
data, which itself is a prediction, and
then when new observations finally do
become available, perform actual verifi-
cation (and write a second paper about
it). Of course, this last step might too
often lead to disappointment as it can
reveal depressing conclusions for those
who loved their models too well.

The point about the observations
used in verification having never been
used in any way cannot be under-
stressed. Many methods like cross val-
idation use so-called verification data
sets to estimate model goodness. The
problem is that the temptation to tweak
the original model so that it performs
better on the verification set is too
strong for most to resist. I know of no
references to support this opinion, but

having felt the temptation myself (and
given in to it), I am sure it is not uncom-
mon. Yet when this is done it in essence
unites the training and validation data
sets so that they are really one, and we
do not have a true test of model good-
ness in the wild, so to speak.

Yet we do have to have some idea
of how good a model might be. It may,
for instance, be expensive to wait for
new observations, or those observations
may depend on the final model chosen.
So it is not undesirable to have an esti-
mate of future performance. This re-
quires two elements: a score or mea-
sure of goodness applied to old obser-
vations, and a new model of how that
score of measure will reproduce in new
observations. As for scores and mea-
sures, there are many: years of research
has left us well stocked with tools for
assessing model predictive performance;
e.g. [41, 16, 73, 74, 85, 55, 15]. A
sketch of those follows presently. But it
is an open question, in many situations,
how well scores and measures predict fu-
ture performance, yet another area wide
open for research. In order to do this
well, we not only need skillful models
of observables Y, but also of the mea-
sures X, since all predictions are condi-
tional on those X. The possibilities here
for new work are nearly endless.

5.2 Verification Scores

Here is one of many examples of
a verification measure, the continuous
ranked probability score (CRPS), which
is quite general and has been well inves-
tigated, e.g. [40, 55]. We imagine the
CRPS to apply to old observations here
for use in model fit, but it works equally
well scoring new ones.

Let Fi(s) = Pr(Y < s|XiDnM), i.e.
a probabilistic prediction of our model
for past observation Xi. Here we let s
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vary, so that the forecast or prediction
is a function of s, but s could be fixed,
too. Let Yi be the i-th observed value
of Y. Then

CRPS(F,Y) =
∑
i

(Fi − I{s ≥ Yi})2

(18)
where I is the indicator function. The
score essentially is a distance between
the cumulative distribution of the pre-
diction and the cumulative distribution
of the observation (a step function at
Yi). A perfect forecast or prediction is
itself a step function at the eventually
observed value of Yi, in which case the
CRPS at that point is 0. Lower scores in
verification measures are better (some
scores invert this). The “continuous”
part of the name is because (18) can
be converted to continuity in the ob-
vious way; see below for an example.
If F is not analytic, numerical approx-
imations to CRPS would have to suf-
fice, though these are easy to compute.
When Fi = pi, i.e. a single number,
which happens when Y is dichotomous,
the CRPS is called the Brier Score.

Expected scores are amenable to de-
composition, showing the constituent
components of performance; e.g. [17].
One is usually related to the inher-
ent variability of the observable, which
translates into an expected non-zero
minimum of a given score (for a certain
model form); for a simple example of
the Brier scores, see [72]. This expected
minimum phenomenon is demonstrated
below in the continuing example. Model
goodness is not simply captured by one
number, as with a score, but in exam-
ining calibration, reliability, and sharp-
ness. Calibration is of three dimen-
sions: calibration in probability, which
is when the model predictions converge
to the prediction-conditional relative
frequency of the observables, calibration

in exceedance and calibration in aver-
age; these are all mathematically de-
fined in [41]. There is not the space here
to discuss all aspects of scoring, nor in-
deed to give an example of validation
in all its glory. It is much more reveal-
ing and useful than the usual practice of
examining model residuals, for a reason
that will be clear in a moment.

CRPS is a proper score and it is sen-
sitive to distance, meaning that obser-
vations closer to model predictions score
better. Proper scores are defined con-
ditional (as are all forecasts) on X, Dn

and M; see [91] for a complete theoreti-
cal treatment of how scores fit into de-
cision analysis. Given these, the proper
probability is F , but other probabilities
could be announced by scheming mod-
elers; say they assert G 6= F for at least
some s, where G is calculated condi-
tional on tacit or hidden premises not
part of M. Propriety in a score is when∑

i

S(Gi,Yi)Fi ≥
∑
i

S(Fi,Yi)Fi.

(19)
In other words, given a proper score the
modeler does best when announcing the
full uncertainty implied by the model
and in not saying anything else. Pro-
priety is a modest requirement, yet it
is often violated. The popular scores

RMSE, i.e.
√∑

i(F̂i − Yi)2/n, mean

absolute deviation, i.e.
∑

i |F̂i − Yi|/n,

where F̂i is some sort of point fore-
cast derived as a function of Fi, are not
proper. The idea is information is be-
ing thrown away by making the fore-
cast into a point, where we should in-
stead be investigating it as a full prob-
ability: a point is a decision, and not a
probability. Of course, points will arise
when decisions must be made, but in
those situations actual and not theoret-
ical cost-loss should be used to verify
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models, the same cost-loss that led to
the function that computed the points.
Similarly, scores like R2 and so on are
also not proper.

If F (as an approximation) is a (cu-
mulative) normal distribution, or can be
approximated as such, then the follow-
ing formula may be used (from [40]):

CRPS(N(m, s2),Y) =

s

(
1√
π
− Y−m

s

(
2Φ

(
Y−m
s

)
− 1

))
− s

(
2φ

(
Y−m
s

))
(20)

where φ and Φ are the standard Normal
probability density function and cumu-
lative distribution function, and m and
s are known numbers given by our pre-
diction. These could arise in regression,
say, with conjugate priors. Estimates of
(20) are easy to have in the obvious way.

CRPS, or any score, is calculated
per prediction. For a set of predic-
tions, the sum or average score is usu-
ally computed, though because averag-
ing removes information it is best to
keep the set of scores and analyze those.
CRPSi can be plotted by Yi or indeed
any xi. Here is another area of research
about how best to use the information
given in verification score.

Next we need the idea of skill. Skill
is had when one model demonstrates
superiority over another, given by and
conditional on some verification mea-
sure. Skill is widely used in meteorol-
ogy, for example, where the models be-
ing compared are often persistence and
the fancy new theoretical model pro-
posed by a researcher. This is a highly
relevant point because persistence is the
forecast that essentially says “tomorrow
will look exactly like today”, where that
statement is affixed with the appropri-
ate uncertainty, of course. If the new
theoretical model cannot beat this sim-

ple, naive model, it has no business be-
ing revealed to the public. Economists
making time series forecasts are in ex-
actly the same situation. Whatever
model they are proposing should at
least beat persistence. If it can’t, why
should the model be trusted when it
isn’t needed to make good predictions?

It is not only times series models
that benefit by computing skill. It
works in any situation. For example,
in a regression, where one model has p
measures and another, say, has p + q.
Even if a researcher is happy with his
model with p measures, it should at
least be compared to one with none,
i.e. where uncertainty in the observable
is characterized by the distribution im-
plied by the model with no measures. In
regression, this would be the model with
only the intercept. If the model with
the greater number of measures cannot
beat the one with fewer, the model with
more is at least suspect or has no skill.
Because of the potential for over-fitting,
it is again imperative to do real verifi-
cation on brand new observations. How
skill and information theoretic measures
are related is another open area of inves-
tigation.

Skill scores K have the form:

K(F,G,Y) =
S(G,Y)− S(F,Y)

S(G,Y)
, (21)

where F is the prediction from what
is thought to be the superior or more
complex model and G the prediction
from the inferior. Skill is always rela-
tive. Since the minimum best score is
S(F,Y) = 0, and given the normaliza-
tion, a perfect skill score has K = 1.
Skill exists if and only if K > 0, else it
is absent. Skill like proper scores can
be computed as an average over a set
of data, or individually over separate
points. Plots of skill can be made in
an analogous way. Receiver operating
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characteristic (ROC) curves, which are
very popular, are not to be preferred to
skill curves since these do not answer
questions of usefulness in a natural way;
see [16] for details.

We should insist that no model
should be published without details of
how it has been verified. If it is has
not been verified with never-before-seen
observations, this should be admitted.
Estimates of how the model will score
in future observations should be given.
And skill must be demonstrated, even if
this is only with respect to the simplest
possible competitive model.

5.3 Example Continued

We now complete the housing price
example started above. Fig. 2 showed
all predictions based on the assumption
that old X were likely to be seen in the
future, which is surely not implausible.
Individual predictions with their accom-
panying observations can also be shown,
as in Fig.2, which shows the four obser-
vations of the data (picked at random),
and with predictions assuming their X
are new.

These plots are in the right for-
mat for computing the CRPS, which
is shown in Figs. 4 and 5. The first
shows the normalized (the actual values
are not important, except relatively) in-
dividual CRPS by the observed prices.
Scores away from the middle prices are
on average worse, which will not be a
surprise to any user of regression mod-
els, only here we have an exact way of
quantifying “better” and “worse.” There
is also a distinct lowest value of CRPS.
This is related to the inherent uncer-
tainty in the predictions, conditional on
the model and old data, as mentioned
above. This part of the verification is
most useful in communicating essential
limitations of the model. Perfect predic-

tions, we project, assuming the model
and CRPS will be used on genuinely
new data, are not possible. The vari-
ability has a minimum, which is not
low. An open question is whether this
lower bound can be estimated in future
data from assuming the model and data;
equation (20) implies the answer is at
least yes sometimes (it can be computed
in expected value assuming M’s truth).

Now plots like Fig. 4 can made
with CRPS by the Y or X, and it can
be learned what exactly is driving good
and bad performance. This is not done
here. Next, in Fig. 5 the individual
CRPS of both models, with and without
nox, are compared. A one-to-one line is
overdrawn. It is not clear from examin-
ing the plot by eye whether adding nox
has benefited us.

Finally, skill (21) is computed, com-
paring the models with and without
nox. A plot of individual skill scores
as related to nox is given in Fig. 6.
A dashed red line at 0 indicates points
which do not have skill. Similar plots for
the other measures may also be made.

The full model does not do that well.
There are many points at which the sim-
pler model bests the more complex one,
with the suggestion that for the highest
values of nox the full model does worst.
The overall average skill score was K
= -0.011, indicating the more compli-
cated model (with nox) does not have
skill over the less complicated model.
This means, as described above, that
if the CRPS represents the actual cost-
loss score of a decision maker using this
model, the prediction is that in future
data, the simpler model will outperform
the more complex one.

Whether this insufficiency in the
model is due to probability leakage, or
that the CRPS is not the best score in
this situation, remain to be seen.
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Fig. 3 The probability prediction of housing prices at four old X, assumed as new. An
empirical CDF of the eventual observation at each X is over-plotted.
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Fig. 4 The individual CRPS scores (normalized to 1) by the price of houses (in
$1,000s). Lower scores are better. Not surprisingly, scores away from the middle prices
are on average worse.

We have thus moved from delight-
ful results as indicated by p-values, to
more sobering results when testing the
model against reality—where we also
recall this is only a guess of how the
model will actually perform on future
data: nox is not useful. Since the possi-
bility for over-fitting is always with us,
it is the case that future skill measures

would likely be worse than those seen in
the old data.

6 THE FUTURE

As the example suggests, the fail-
ure to generate exciting results might
explain why historically the predictive
method was never adopted. Reality is
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Fig. 5 The individual CRPS scores of the full model, with now, by the CRPS of the
model removing nox. A one-to-one line has been overdrawn. There does not seem to be
much if any improvement in scores by adding nox to the model.
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Fig. 6 The individual skill scores comparing models with the old X with and without
nox, as related to nox. A dashed red at 0, indicating no skill, has been drawn.

a harsh judge. Yet above if it was
considered verification was judgmental
in-sample, imagine the shock when it
will be learned verification is downright
cruel out-of-sample, i.e. in new, never
before seen observations. The reality-
based approach is therefore bound to
lead to disappointment where before
there was much joy. Such is often the

case in science when, as the saying goes,
a beautiful theory meets ugly facts.

There should by now at least be
more suspicion among researchers that
models have truly identified cause. We
have seen the many confusing and dis-
parate ideas about cause which are
common in uncertainty models, a class
which includes so-called artificial intelli-
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gence and machine learning algorithms.
We don’t often recognize that nothing
can come out any algorithm which was
not placed there, at the beginning, by
the algorithm creator. Algorithms are
useful for automating tedious processes,
but coming to knowledge of cause re-
quires a much deeper process of think-
ing. Every scientist believes in confir-
mation bias; it’s just they always believe
it happens to the other guy.

Creators of models and algorithms
are one class, users are another. The
chance of over-certainty increases in use
and interpretations of models in this
latter class because a user will not on
average be as aware of the shortcom-
ings, limitations, and intricacies of mod-
els are creators are. All common experi-
ence bears out that users of models are
more likely to ascribe cause to hypothe-
ses than more careful creators of mod-
els. The so-called replication crisis can
in part be put down to non-careful use
of models, in particular the unthinking
use of hypothesis testing; e.g. [3, 99].

The situation is even worse than
it might seem, because beside the for-
mal models considered here, there is
another, wider, and more influential
class, which we might call media mod-
els. There is little to no check on the
wild extrapolations that appear in the
press (and taken up in civic life). I have
a small collection of headlines report-

ing on medical papers, each contradict-
ing the other, and all trumpeting that
causes have been discovered (via test-
ing); see [10]. One headline: “Bad news
for chocoholics: Dark chocolate isn’t so
healthy for you after all,” particularly
not good, the story informs, for heart
disease. This was followed by another
headline three short months later in the
same paper saying“Eating dark choco-
late is good for your heart.” Similar col-
lections for economics studies could eas-
ily and all too quickly be compiled.

It could be argued the ultimate re-
sponsibility is on the people making the
wild and over-sure claims. This holds
some truth, but the appalling frequency
that this sort of thing happens without
any kind of corrections from authori-
ties (like you, the reader) implies, to the
media, that what they are doing is not
wrong.

Bland warnings cannot take the
place of outright proscriptions. We
must ban the cause of at least some of
the over-certainty. No more hypothe-
sis testing. Models must be reported
in their predictive form, where anybody
(in theory) can check the results, even
if they don’t have access to the original
data. All models which have any claim
to sincerity must be tested against real-
ity, first in-sample, then out-of-sample.
Reality must take precedence over the-
ory.
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