Skip to content
September 5, 2008 | 21 Comments

Predict who will win the US Presidential Race

When you have a chance, please log on to

and guess who will win the election this year.

This poll closes on 11:50 pm 14 September 2008. No guessing will take place after that.

I am testing the ability of people to guess elections at a point where the amount of information known about each candidate is roughly the same. The site is completely anonymous.

Please do not try and stuff the ballot box by voting more than once. I will not release any results until after the election is over. (I will also remove duplicate records.)

Please tell everybody you know, of every political background, liberal or conservative. Email them the link above. If you can, link to this page on other blogs so that we get as large a sample as possible.

Please, pretty please answer the 6 questions honestly.

Once the election is over, the analysis will appear at this web site.

Thank you very much!

September 4, 2008 | 8 Comments

New Democrat Theme Song

Lifetime Democrat and far-left advocate Linda Ronstadt threw her support behind that party’s nominee Thursday, according to the singer’s agent. Ms Ronstadt donated her Top 40 hit “Poor, Poor Pitiful Me” to the campaign which immediately adopted it as its theme song.

“The lyrics to Ms Ronstadt’s song perfectly embody what the Democrat party is all about,” said campaign spokesperson Simon bar Sinister. “The line ‘Woe, woe is me!; really speaks to all Americans,” he continued.

These thoughts were echoed by The Chosen One himself, when he said, “‘Poor, poor pitiful us’ encapsulates all that is wrong with America. Sure, I’m doing OK, and most of the people I know are doing fine, but there’s a lot of hurt out there—or so I’ve heard. We want people to really feel sorry for themselves, and this song helps tremendously with that goal. The only way that people can be happy is if the government takes care of them. If I take care of them.”

Sinister agreed saying, “The ‘man’ spoken of in the song who ‘really worked me over good’ was clearly George Bush. It’s astonishing Linda would have seen Bush coming so long ago.”

The song is attached below for your enjoyment.


On journalists and Governor Palin

What is the one thing that will anger a journalist faster than anything else?

Telling him that he is not important.

Last night Governor Sarah Palin said, “I am not going to Washington to seek [journalists’] good opinion.” No line could be more calculated to set off a flurry of fluster and flummery among the elite media. This means war.

She should have done what the other guy did and coddled reporters, sweet-talked them, gave them the precious gift of “access”.

Obama was more savvy. And lo, He gathered them—every major “non-biased” journalist in the country—and brought them on his victory tour of Europe. He gave them then and gives them now minute-by-minute access to his Grand Personage.

Obama’s master move, however, was to tell the media exactly what it wants to hear: “You guys are smart. You know what is right. Your ideas are important.”

See, what happens is something like this. A newly fledged reporter starts covering events. She writes down what has happened at some function so that others can read about it. The events and functions are important, so the reporter begins to feel that she is important. As time passes and more events are covered, our journalist begins to second guess the actions of those on whom she reports. She supports some of those actions, and disapproves of others. The temptation to interdict between the truly important people and her audience becomes overwhelming and she gives in. She begins to editorialize, to selectively include and exclude, and finally to advocate.

Because reporters cover weighty, influential, and serious matters they come to believe that they themselves are weighty, influential, and serious.

The fallacy is obvious.

The reason the media is now so apoplectic in its uncivilized, sexist, and ridiculous attacks on Governor Palin is because of just one thing. Petulance.

The main stream media is having a tantrum. They want to be told again that they are as important as they think they are. They are livid that anybody could not see this and they won’t stop screaming until they get their way.

Is it any wonder, then, that more and more people are switching them off and turning to alternatives?

September 2, 2008 | 11 Comments


Around the 4th of July, here in the States, there is a tendency for official weather forecasts to show a probability of precipitation that is lower than it should be. It rains more than the forecasters guess.

The same thing inverted happens around December 25th (the Federally Recognized Holiday That Shall Not Be Named): the forecasts tend to give too high a probability of precipitation. It snows less than the forecasters guess.

This phenomena is well recognized in meteorology where it has long gone by the name of wishcasting: it is also found in many other areas of life, which I’ll talk about below. Wishcasting describes the tendency of the forecaster to tilt his guess toward the outcome which he would like to see, or toward the outcome he knows his viewers would like to see.

Good weather forecasters, obviously, are aware of this tendency and do their best to lessen its influence. But even the best of them tend to get excited when a big storm is on its way, these being matters of great and evident importance, and sometimes issue forecasts which exaggerate the chance of severe weather. Still, the influence of wishcasting is small among professionals, mostly because of the routine evaluation of forecast performance and criticism of peers. People like to pick on weather forecasters, but among any professional group, I have not found any to be better or more reliable than the National Weather Service.

Before we go further, let me answer an objection which might have occurred to you. Why not exaggerate the probability of a storm causing damage since “it’s better to be safe than sorry”? To do this takes the decision out of the hands of person who will experience the storm and puts it into the hands of the forecaster. And that is the wrong thing to do: the forecaster does not know better than his audience what decisions are best. Every person in the path of a storm knows what losses he will face if a storm hits, and how much it will cost him to protect. If people are routinely given exaggerated forecasts, then they will pay the cost of protecting more than they should, and those costs are not insignificant (how much money is being lost by the shops of New Orleans from the protracted evacuation?). You cannot use the forecast as a tool to warn people of dangers which are unimportant to them. It will make them less likely to believe forecasters when real dangers arise. The lesson of Chicken Little is pertinent.

While the Weather Service forecasters do a great job, this is not so among reporters who routinely wildly overstate potential dangers, even when that danger has passed. Anybody who watched television coverage of hurricane Gustav could attest to this. We saw fearless reporter Geraldo Rivera standing in the streets of New Orleans holding a small aneomometer shouting, “There’s a 60 miles per hour, Bob! Wait! A 61!” He bravely leaned into the stiff breeze and held his ground to bring us this breaking news. Of course, anybody who has driven a car and stuck their hand out the window will know that a 60 MPH wind is hardly life threatening.

Well, reporters shading the truth, embroidering facts, neglecting pertinent information, and at times outright lying is by now of no surprise. People have learned to “divide by 10” any statement issued from a newsroom, so journalists cause less harm than they would if they were taken at face value.

Wishcasting is by no means restricted to weather predictions. I’ll ask you right now, who will be elected president: McCain or Obama? It is difficult to remove the prejudices you have for one candidate or the other and give a good guess. If you love McCain, you are likely to increase the chance of him winning. If you fear Obama’s promised tax increases, that might increase your guess of the chance of him winning if you are naturally pessimistic. To carefully sift through all the evidence and arrive at an unemotional prediction is extremely difficult.

Gamblers often wishcast. “Red hasn’t come up if seven spins, so it’s more likely to now.” Part of this reasoning is due to misunderstanding or not knowing the rules of probability that govern simple games, but part is also due to the desire for the outcome. Wishcasting is prevalent in environmental circles. So much so, that an “activist” who doesn’t embellish is a oddity. Brokers, financial planners, stock pickers, and similar professionals are no less prone to wishcasting.

Wishcasting is somewhat different than the experimenter effect, although there is some overlap. The experimenter effect is when a scientist (or group of them), consciously or not, set up a model to demonstrate the effect they were looking for. A common example is a drug trial. One group is given a new drug, the other an old one or a placebo. If the patients are evaluated by a physician who knows which patient got which drug, it is likely the effects of the new drug will be exaggerated. This phenomena is so well known that the government mandates blinding of medical trials. This is where the physician who evaluates the patients has no idea which treatment the patient has received.

Michael Crichton, physician and author, in testimony to congress, gave an example of this:

It’s 1991, I am flying home from Germany, sitting next to a man who is almost in tears, he is so upset. He’s a physician involved in an FDA study of a new drug. It’s a double-blind study involving four separate teams—one plans the study, another administers the drug to patients, a third assesses the effect on patients, and a fourth analyzes results. The teams do not know each other, and are prohibited from personal contact of any sort, on peril of contaminating the results. This man had been sitting in the Frankfurt airport, innocently chatting with another man, when they discovered to their mutual horror they are on two different teams studying the same drug. They were required to report their encounter to the FDA. And my companion was now waiting to see if the FDA would declare their multi-year, multi-million dollar study invalid because of this chance contact.

His point in this testimony was to show that researchers in global warming are nowhere near as careful as their colleagues in medicine:

[T]he protocols of climate science appear considerably more relaxed. In climate science, it’s permissible for raw data to be “touched,” or modified, by many hands. Gaps in temperature and proxy records are filled in. Suspect values are deleted because a scientist deems them erroneous. A researcher may elect to use parts of existing records, ignoring other parts. But the fact that the data has been modified in so many ways inevitably raises the question of whether the results of a given study are wholly or partially caused by the modifications themselves…

…[A]ny study where a single team plans the research, carries it out, supervises the analysis, and writes their own final report, carries a very high risk of undetected bias. That risk, for example, would automatically preclude the validity of the results of a similarly structured study that tested the efficacy of a drug.

Wishcasting meets the experimenter effect when the results from a non-blinded experiment are exaggerated to “raise awareness” of the potential horrors that await us if we do not heed the experimenters. Sometimes this exaggeration is done on purpose, as with the weather forecaster who feels his viewers would be “better safe than sorry”, and sometimes the overstatement is unconscious because the forecaster has not recognized his limitations. Scientists often feel they are special and able to avoid the frailties that plague the rest of us, but of course, they cannot; they are still human.

It is nearly impossible to disentangle experimenter effect from wishcasting in any situation, nor can we easily identify the constituent facts and their relevance used by a forecaster in producing his forecast. To do so essentially means producing a rival forecast and is a laborious process.

What we can do (this is my line of country) is to check how good the actual performance of a forecast is. If the forecast routinely fails, we can say something has gone wrong. Just what requires more work: was it bad data, mistaken theory, wishcasting, or something else? If the forecast routinely fails, we are rational to suspect it will fail in the future, and that the theories said to underly the forecast might be false. If the forecast fails, we are also right to question the motives of the forecaster, because it is these motives that influence the presence or amount of wishcasting.

These cautions do not just apply to weather or climate forecasts, but in all areas where routine predictions are made. Could you be making more money in your stock portfolio or office football pool, for example? Generally, wishcasting takes places when forecasting complex systems, like the weather, climate, or any area involving human behavior. It’s much less likely in simple situations, like how much this electron will move under a certain applied force, or what will happen when these two chemicals are mixed. But we’ll save complexity for another day.